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DIGITAL COMPUTER ANALYSIS OF CONDENSATION
IN HIGHLY EXPANDED FLOWS

SUMMARY

The application of the IBM 7090 Digital Computer to the theoretical

prediction of condensation in highly expanded flows is presented. The

equations of the spontaneous nucleation theory of Frenkel (13) are com-

bined with the steady one -dimensional diabatic flow equations for a solu-

tion of the expansion of a pure vapor. A digital computer program for

the solution of these equations is compiled and presented.

The theoretical prediction of the condensation of nitrogen is com-

pared to experimental results and variations in specific heat, latent

heat of vaporization, surface tension, and rate of expansion are inves-

tigated. The theoretical calculation is applied to metal vapors and

the results for copper and zinc vapors are presented.

The results indicate that the theoretical solution gives a reason 1- •

able prediction of the condensation in highly expanded flows. The

degree of supersaturation increases with an increased rate of expan-

sion and for a proper set of initial conditions "condensation free" flow

is obtainable. The rate of expansion and the surface tension are the

most critical parameters in the equations for condensing flow. Vari-

ations of specific heat and latent heat of vaporization show only minor

effects on the end result.
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L INTRODUCTION AND SURVEY OF THE LITERATURE

The phenomenon of the spontaneous condensation of a gas or vapor

into the liquid phase has been the subject, of numerous theoretical and

experimental investigations for the past three-quarters of a century.

The condensation of an expanding vapor was first noted in 1887 by

R. von Helmholtz; however , this phenomenon did not enter the field of

aeronautics until about 1940 when its occurrence was noted in the

supersonic wind tunnel.

In a supersonic nozzle
s
the gas or vapor undergoes an isentropic

expansion which results accordingly in a decrease in the temperature

and pressure* Generally the saturation vapor pressure decreases with

temperature more rapidly than does the static pressure of the isen-

tropic expansion
s
hence saturation conditions are approached- If the

rate of expansion is very rapid the flow will pass through the point at

which saturation temperature and pressure are reached without any

condensate being formed. The vapor is then in a non-equilibrium state,

super saturated^ in which the existing vapor pressure is higher than the

corresponding equilibrium saturation pressure.

The first person to note that a supersaturated vapor can exist was

R. von HelmholtZj who showed that saturated steam expanding through

an orifice into the atmosphere would remain clear for some distance

before becoming cloudy. Stodola (1) furthered this by devising experi-

ments on superheated steam which would detect the onset of condensa-

tion and provide evidence of super saturation.

-1-
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In the late 1940's and the early 1950 v

s an intensive series of inves-

tigations were conducted to determine the condensation of air, water

vapor in air, and nitrogen. Many of these were conducted at the Cal-

ifornia Institute of Technology, and worthy of note are the investiga-

tions of Head (2) on water vapor in air, Willmarth and Nagamatsu (3)

on nitrogen, and a summary report of GALCIT work by Nagamatsu (4).

A series of investigations of air in high speed wind tunnels conducted

during this era include the works of Stever and Rathbun (5), Wegener

and Reed (6), McLellan (7) and Bogdonoff and Lees (8).

There was a lag of interest in this area in the middle to late 1950 9

s.

However, with the advent of the nuclear space propulsion system and

the use of metallic vapors as the working fluid for hypersonic wind

tunnels, the interest has been renewed. The Office of Naval Research

sponsored the recent review of existing theories by Courtney (9) in an

effort to stimulate this interest. Many of these theories are built

around the spontaneous self-nucleation concept, and they base the

collapse of the supersaturated state upon the determination of the rate

of droplet growth to the critical drop size. The complexity of the

nucleation phenomenon requires that many simplifying assumptions

be made in order to evaluate the problem by hand calculations.

Courtney (9) attempts to obtain a more complete evaluation of the

nucleation theories by carrying out the calculations on a digital

computer.

A recent study of air in hypersonic wind tunnels by F. L. Daum (10)

indicates that, as yet, there is no proven available theory for predict-

ing the amount of super saturation expected in a hypersonic nozzle from

which may be determined the point of onset of condensation.
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Until recently none of the investigations had included the problem

of metal vapors. The investigation by Hill, et al, (11) in 1962 adapted

the existing theory to the case of metal vapors and provided results

which indicate that this is a valid extension of the theory. The devel-

opment of the nucleation equations and flow equations did not prohibit

their application to metals, but since the need had not existed the

application was not attempted. The authors noted have not mentioned

any adaptation of the digital computer to the hypersonic flow problem.

Hill suggests that this is the next logical step and that a computer pro-

gram should be used to investigate the effect of variations in surface

tension, nozzle length, area distribution, inlet conditions, and other

parameters as welL

Purpose of the Present Investigation

At the inception of this study there was no known application of

condensation theory to the case of metal vapors. The Hypersonic

Wind Tunnel Group of The University of Michigan was undertaking

the experimental investigation of the condensation of metal vapors in

highly expanded flows, and thus arose the need of a method for the

theoretical prediction of the onset and magnitude of condensing flow.

Of greater importance was the need for an understanding of the

effect a variation in any of the various parameters might have on the

end result. Thereby arose the need for a digital computer program

from which numerous results can be obtained for multiple combina-

tions of the various parameters.

The extent of the present study is to:

(a) review the literature to determine which of the more promis-

ing theories will most readily adapt to the IBM 7090 digital

computer,





(b) write the program and test against, some known experimental

results to validate the method,

(c) obtain theoretical results for several metal vapors under

reasonable hypersonic test conditions,

4d) vary surface tension, specific heat, heat of vaporization, and

nozzle parameters to show the magnitude of influence on the

problem.

The first approach was one toward a general problem with all

quantities variable and with multicomponent working fluids This

rapidly exceeded the capabilities of the computer, and of the author,

and dictated the simplified approach which is employedo The system

will be developed for one-dimensional expansion of pure vapors which

obey the perfect gas law and which have a constant ratio of specific

heats. Initially the specific heat, latent heat, and surface tension will

be taken as constant and later will be varied to observe the effect





II. THERMODYNAMIC FUNDAMENTALS

A. Isentropic Expansion of a Vapor

The assumption that the vapor follows the perfect gas law is, in

eral, well justified and the pressure and temperature can be related

by

y

^,^7 ~ 1

(2.1)
p T l '

o o

Any vapor whose latent heat is large, i. e. , L > C T, will approach

saturation as the temperature is decreased by an isentropic expansion,

and if the expansion is rapid enough there will be a thermal lag so that

a supersaturated region will be reached.

The Clausius-Clapeyron equation can be used to relate the variation

of the saturation vapor pressure with temperature to the latent heat of

vaporization.

d
Jj£ - L(T)

dT (v
y

- v
L
)T U "

l)

where p is the saturation vapor pressure corresponding to a partic-

ular temperature and for an infinite droplet radius, L(T) is the latent

heat of vaporization, and v and v
T
are the specific volumes of the

vapor phase and liquid phase, respectively.

Since the liquid occupies a very small portion of the total volume,

we will assume v - v T = v and v = -
. Assuming L - constant,

v L v v p
v

equation (2. 2) becomes
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dP T T
__*_ _L_ JLidii (0 2)
dT

=

v T "" _2 R x J

v T

where, /i. - the molecular weight of the vapor

R - universal gas constant

In order to compare the slope of the isentrope with (2. 3) we will

differentiate (2. 1) logarithmically,

from which

dp dT

p y -IT

a C Md£ - P P
dT R T

!2.4)

(2.5)

by virtue of y = C /C and R/u C - C . The ratio of slopes isj p v '

p v

therefore

^S f *2- = Jk. (2 6)dT'dT CT '
y }

P

Thus for the case of L/T > C the saturation vapor pressure decreases

with decreasing temperature more rapidly than does the vapor pressure

in an isentropic expansion and the super saturation ratio
s p/p , contin-

ually increases until saturation and
}
eventually

5
super saturation are

obtained.

Head (2) gives slope ratios for several vapors and shows a typical

value of 2 for nitrogen nozzles operating at normal reservoir conditions.

Similarly,, he shows that if a vapor had a small latent heat of vaporiza-

tion, L/T <C
p

, an isentropic compression is necessary for the approach

to saturation conditions.
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Upon reaching the saturation point the fluid has a choice of two

routes by which to continue the expansion. One, the saturated equilib-

rium expansion, involves a gradual process of condensation which com-

mences at the saturation point and maintains thermodynamic equilibrium

throughout the expansion. The other, a supersaturated expansion, is

characterized by a delay in the onset of condensation to some point down-

stream of the saturation point at which the vapor temperature is well

below the corresponding saturation temperature.,

Before continuing further with these alternatives it will be neces-

sary to develop the diabatic flow equations which account for the effect

of the condensate.

Bo One -Dimensional Steady Flow Equations With Condensation

The equations have been derived by many authors; however, we are

interested here in a specific case which includes the following assump-

tions:

1. The vapor phase is a pure vapor and may be treated as a per-

fect gas.

2. The condensed mass is a liquid, is uniformly distributed

throughout the gaseous components, and has the same speed

and temperature as the stream.

3. The volume of the condensed phase is negligible compared to

the total volume.

4. The nozzle flow is frictionless and is without heat transfer.

5. The saturation curve for the vapor may be adequately approxi-

mated by the Clausius-Clapeyron equation.

6. The latent heat of vaporization and the specific heat at constant

pressure remain constant.





Assumption 2 requires some discussion, in that the crystallization

cf the liquid drops or the sublimation directly to the solid state is prob-

able at the lower temperatures. In the area concerned, the available

experimental data on the properties of the vapor and the liquid phases

is extremely limited, and for the crystalline phase it is practically

non-existent. Highly extrapolated curves are the only sources, in many

instances, so the liquid assumption will be as good as the available

data. The zero drag approximation is supported by Stever (12) in cit-

ing numerous investigations which verify high fractional condensation

rates. From the equations of Frenkel (13) it is noted that a small crit-

ical drop radius is necessary for a high condensation rate. In high

speed flow the drops are in the nozzle for only a short, period of time,

so there is only time for a small increase in size due to growth. Thus,

for high speed expansions with super saturation, the drop size will be

small, and the logical assumption is that the condensate and the vapor

travel at the same velocity.

Only the major steps in the development of the flow equations for

a pure vapor are presented in this section. A more complete develop-

ment is presented in Wegener (14).

The continuity equation can be written in its usual form, since the

volume of the liquid is negligible and the vapor and drops travel at the

same velocity. With p taken as the density of the mixture and m as the

total mass which passes a given location in unit time:

pUA = m = constant

(continuity) ^ + ^f + X = ° (2 ' 7)

As a result of the assumptions 2 and 3 the equations of momentum and

state are:
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(momentum) ^P = - UdU (2. 8)

(state) ?"?"-

A

(2 - 9)

From the first law of thermodynamics, with no external heat sources,

the energy equation is

d (h + U
2
/2) * . (2. 10)

The density of the mixture, p, used in the above equations is

defined by the equation, p * p + p' . The density p' is the mass
V i-i l_i

of liquid condensate per unit volume of the vapor,, This requires an

assumption that the liquid droplets be uniformly distributed throughout

the vapor so that the densities of the vapor and of the liquid may be

referenced to the same volume, g is the mass fraction of the working

fluid which has condensed into the liquid phase.

By use of the assumption that the vapor and the liquid are at the

same temperature, and for constant C and L equation (2. 10) becomes,

d(U
2
/2+ C T- gL) = (2.11)

and

(energy) UdU + C dT - L dg * (2.12)

By introducing the sound speed by the perfect gas formula in

? R
terms of vapor density, A = y — T, an alternate form of (2„ 12) is

(r -l)M
2

f + f -£16 = (2.13)

P
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The four equations, (2. 7), (2. 8), (2. 9), and (2. 12) involve the six

unknowns, p, p, T, U, g, and A. For this particular problem, it will

be assumed that g and A are determined from other sources and p, p,

T and U are obtained from the above equations.

Area will be known for a given nozzle, or the area distribution

must be determined from a given Mach number or pressure distribu-

tion. The question of determining the condensation, g, depends on the

assumed flow conditions. If it is assumed that thermodynamic equilib-

rium exists at all times the Clausius-Clapeyron equation can be used.

This method will be developed in Section V. However, in the event

super saturation takes place, the determination of g is not so simple

and nucleation theory must provide the missing equation.

After devoting one section to the determination of the onset of

condensation, and one to nucleation theory, the flow equations will be

married to the condensation equations for a complete solution.





IE. PREDICTION OF THE ONSET OF CONDENSATION

A review of the literature shows that indeed there is no proven

available theory which is valid for predicting the onset of condensation

in a supersaturated flow. A solution of the equations for predicting

this point always requires an assumption as to the amount of condensate

formed, the droplet formation rate, or the deviation from isentropic

flow.

A marriage of the flow equations (thermodynamic) and the conden-

sation equation from nucleation theory provide a means of computing

the flow properties for a given area distribution. A plot of a flow param-

eter during the period of condensation shows a sharp deviation from a

plot of the same parameter undergoing isentropic expansion. Experi-

mental investigations have determined that static pressure, p, and pitot

pressure, p
!

, are strongly affected by condensation and a jump in these

quantities usually is used to detect the onset of condensation.

Here we are defining the point of onset of condensation as that point

along the flow at which the initial condensate formed is sufficient to

cause the computed value of p or T to differ a detectable amount from

its corresponding value for the isentropic expansion.

The complete solution could be solved for very small steps starting

at the saturation point and continuing throughout the length of the nozzle.

From a plot of actual pressure, p, compared to the pressure distribu-

tion for an isentropic expansion the point of onset of condensation could

be determined. However, this would require an excessive number of

calculations, and for certain combinations of nozzle parameters and

stagnation conditions the vapor may traverse the nozzle without ever

condensing and several minutes of computer time would be wasted.

-11-
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Therefore, it would seem expedient to establish a criterion for estimat-

ing the point of onset of condensation and then to continue the stepwise

computation of the full set of equations from this point onward,,

Since the expansion of the vapor, in which there is no condensed

liquid, will be assumed isentropic, any deviation from isentropic con-

ditions should serve as an indication of condensation. As previously

stated, the static pressure is sensitive to condensation and this will

be used as an indicator. From the calculations of Hill (11) the static

temperature, T, also appears to give a strong indication. At certain

times it is quite possible that the temperature might give a better indi-

cation than the pressure, and this factor now will be investigated.

The flow equations from thermodynamics, (2. 7), (2. 8), (2. 9), and

(2. 13), relate isentropic conditions when there is no condensate present^,

g = Ag = 0, and relate actual conditions when the vapor is condensing.

A proper combination of these equations should produce a parameter ..

which indicates the deviation from the isentrope. Since we are inter-

ested in temperature and pressure we will recombine the flow equations

to obtain expressions for — and -=-
.

d£
+ «L+ ^ (2 . 7)

p U A '

dp * - pUdU (2. 8)

dp _ dp dT dg . .

Y~ P
+
T "1-g (2 ' 9)

t 1N -.2 dU dT L dg A /0 10 ,

(y - 1) M — +-^r-c-T = &° 13 )

P

Substitute equations (2. 7) and (2. 13) into (2. 9) to obtain
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d£. dU dA /v llM2dU +
Ug dg

p " " U " A " lr " L) M
U C T "

(1 - g)
p

dp
=

P

dU F1 , 1N -.2 T V— [1 + (y - 1) M ]^> +
dA f_L_ 1

" A
+
|C T"l-g

R

dg (3.1)

J

from (2. 8) and the equation of state, p = p (1 - g) — T, we obtain

dU
U

(1 - g) dp

yM F

Insert this into equation (4. 1) and rearrange

P TVT
2

|

yM J I

/ L
Ic T
1 P

1 "g
dg

j

dp_
P

yM'

[yM
2

- (1 - g) - (1 - g) (y - 1) M 2
]

dA
+

C T
P

1 "g

[3.2)

dg

For this particular problem we are interested only in the point of

onset of condensation. Therefore, we assume isentropic conditions

exist up to the point and the only condensate present will be the dg

formed over the incremental step at which we are considering the

onset to take place. The calculations will be accomplished in a step by

step manner on a digital computer^ so we write all increments as A

and set g = to get

2 (Ap _ yM j AA | L

P \/r2 1
\" A +:

,
C Tv M - 1 • p /

Ag (3. 3)

From (3. 3) it can be seen that over steps in which there is no conden-

sate (Ag = 0) the stepwise change in pressure will be isentropic. How-

ever if Ag ^ then the step change in p will differ from isentropic^

We therefore rewrite (3. 3) as
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Ap

P

yM AA
iwr

2
1
AM - 1

1 -

AA
/ L
C T
P

1 Ag, (3.4)

We now can define

A I L '

Vaact Ag (3.5)

as the fractional deviation from isentropic of the pressure change over

an increment Ax. The magnitude of e which can be considered a sig-

nificant deviation is yet to be determined.

Now we examine a similar analysis of the temperature as a possible

indicator. From equations (2. 13) and (2. 8) we obtain

dT y - 1 H , dp L .

P

(3.6)

By substituting the value of Ap/p from (3. 4) the equation becomes

r

AT y - 1 J yM AA
7 TUT

2
1
AM - 1

— Itt*-- I
AgaaIc t

L .

+ cT'Ag

p

AT (y - 1) M AA J_

M - 1
AA C T

L\ P

L A M - 1 L
- 1 +

(y - 1) M2 C
p
T
J

Ag)

>

AT (y 1) M AA )

iv/r
2

1
AM - 1

AA 1 +
L y - 1/M'

C T
P

- 1

/J

Ag) (3.7)

Again we define

€™ =
T AA

y - 1/M L
7-1 C T

L\ / p

- l Ag ;s.8)

as the fractional deviation from isentropic of the temperature change

over Ax.
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Note: A comparison of (3„ 5)and(3 8) shows a difference only of

y - 1/M2
1the coefficient of L/C T c Thus as

P I
y-i — 1, i. e. , as M — 1.

e_, approaches the value of e . However, an examination of e_, and e
T p

s T p
for given conditions of L/C T

8
AA

S
Ag produces:

(a) for condensation in the supersonic portion (M > 1) -— e > e
,

(b) for condensation in the subsonic portion (M < 1)— e > e <,

As an example we consider reasonable values of L/C T = 3 and M 10

A A ^
the result gives € = (2) -t-t- Ag and € = (9. 5) T~7"A§ Therefore, a

dual criteria will be selected so that €_, will determine the onset of

condensation when M > 1 and e will be used when M < 1
P





IV. NUCLEATION THEORY

A. Condensation Nuclei

In the process of condensation, the saturated state is referenced

to a plane liquid phase and the vapor is considered to condense on a

flat liquid surface or on a "cold" container wall such as the moisture

formed on the outside surface of a glass of ice water. However, in

highly expanded flows the liquid surface is not present and the "cold"

wall is not available, due either to the "hot" boundary layer surrounding

the flow in a nozzle or to the total absence of a wall in the case of the

free jet.

The vapor then must look for other surfaces on which to condense.

These surfaces appear either in the form of impurities, such as par-

ticles of dust, etc. , or as small drops formed of clusters of molecules

of the vapor itself united by statistical collision.

Obviously, for a truly pure vapor there would be no foreign nuclei;

3
however, dust particles in clean air have been estimated upward of 10

particles per cubic centimeter, so this possibility must be considered.

Head (2) has shown that these foreign nuclei do play an important role

in the onset of condensation. However, for highly expanded flows

where the stay time is very short, Stever (12) has shown that the high

rate of condensation could not be caused by condensation onto the for-

eign nuclei alone. Stever (12) quotes an example from Oswatitsch's

5
study of water vapor which considers 10 foreign nuclei per cubic cen-

timeter traveling in a gas for a distance of 10 centimeters where there

4

-4

o 4
is super cooling of 30 C. A slightly supersonic velocity of 3. 3 x 10

centimeters per second would traverse this 10 centimeters in 3 x 10

seconds. Using the faster growth formula for droplet growth gives a

-16-
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_5
radius of growth of about 3 x 10 centimeters in this distance. The

-8
amount of water condensed over this span then is 10 grams per cubic

centimeter, which releases an amount of heat that is very slight and

which has an insignificant effect on the flow quantities., The actual

condensation process has a marked effect upon the flow properties;

therefore it must be concluded that the number of drops far exceeds

the number of foreign nuclei. We must then resort to the spontaneous

formation of the droplets onto which condensate growth occurs.

There is an opening in the above argument, in that the growth rate

onto the foreign nuclei could be grossly in error. However, Head (2)

1 fi

found droplet formation rates on the order of 10 drops per cubic

centimeter per second in his investigation of water vapor; thus, the

high particle formation rate tends to support Stever's argument

For this analysis it will be assumed that the condensation phenome-

non is one of spontaneously formed nuclei and is triggered by the attain-

ment of critical size droplets onto which the supersaturated vapor

condenses.

The concept of the critical drop size as developed in Stever (12)

stems from the energy required to evaporate a drop of liquid which

contains n molecules,

E((n) = nE - 4?rr
2

<7 (4, 1)
oo

In (4, 1) E is the energy required to remove by evaporation a single

molecule from an infinite surface of liquid and a is the surface tension.

To evaporate one molecule would require

2aV
AE(n) - E ^

( 4. 2 )
oo r
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where V.. is the volume of a molecule of the liquid An application

of Boltzmann's law gives vapor pressure

AE
TT

' kT
p = K» e

and the equilibrium vapor pressure for a plane surface

E
00

XT
kT

p = K° e

Combining these gives the Thompson-Gibbs equation

2V,. cr/rkT
-£- = e

hq
(4.3)

Expressing the molecular volume V.. as /i/N.p,. and rewriting it as

a log function, (4, 3) becomes

ln P/P» rp^T = T^Tf (4
'
4)

Note that with the occurrence of r in the denominator of equation

(4, 4) the equilibrium between the vapor and the liquid drop is unstable.

For a vapor which is saturated with respect to a given drop size, if

one molecule sticks to the drop the radius increases and the existing

vapor pressure is greater than the new equilibrium vapor pressure;

thus, condensation will continue. The reverse is true for evaporation,

in that if one molecule evaporates the existing pressure is lower than

equilibrium and evaporation continues.

Thus arises the concept of the critical drop radius, r*
s
for which

r < r* the droplet vaporizes and for r > r* the droplet grows. Solving

(4. 4) gives
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r
p T
RT In p/p

l4
°
Dj

Hill (11) points out that in a constant environment:, if the critical

radius was used to specify the initial drop size then the growth rate

would be zero and there would be no condensation because at critical

size the decay and growth are equally probable,, Hill bases his use

of 1. 3 times the critical radius on Becker and Doering's conclusion

that at that size the probability of decay is close to zero. In this anal-

ysis the vapor will be flowing and any critical drops formed will not

remain in a constant environment very long since the quasi-steady

steps for the calculations will be very small. Therefore, the com-

monly used r* of equation (4. 5) will be used as the initial drop size„

B. Kinetics of Nucleation and Condensation

As implied previously
s
the spontaneous nucleation approach will

be the only one considered in this analysis., There have been volumes

written in the development of this area and no attempt at reproduction

will be made here. The general approach and final result of the most

frequently referenced authors will be stated,, however*

In highly expanded flows the state of the vapor can change very

rapidly from the unsaturated state to the highly supersaturated state.

Frenkel (13) treats the equilibrium distribution of drops in an unsatu-

rated state as a dilute solution of different substances in the vapor as

a solvent By classifying the different solutes by the number of mole-

cules, n, they have in a drop, he obtained the expression for the

number of drops containing n molecules^

1 2
- T^i I (0t - ) n - 47ir a]
kT L hq v J

fA „,N ^ N e
M

(4. 6
n v
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where N = number of molecules in the vapor state

,0,. , = thermodynamic potential of single molecule

2
477 r g = surface energy term.

This droplet distribution is based on the assumption of equilibrium

(0 < <An. ); however, it is generally assumed that the same distribu-

tion can be used for supersaturated conditions (0.. < (j> ). Note that
liq v

for the supersaturated condition the number of drops increases with

increasing radius and the distribution is unstable. Thus, it becomes

essential to determine the rate at which the distribution changes from

the stable distribution of the unsaturated state to the unstable distribu-

tion of the supersaturated state.

This requires a determination of the rate of formation of critical

sized drops, J, in drops per cubic centimeter per second.

Head (2) states the equilibrium equation of Volmer

2AW 4tt r* a

J = K- e
kT

« K- e
3kT

(4. 7)

where AW is the total work of the formation of the droplet.

The determination of the constant, K, has been developed by sev-

eral authors, including Volmer, Becker and Donng, and Frenkel.

All assume a quasi- stationary phase transition process in which the

number of molecules which condense are instantly replaced in the

vapor such that the number of vapor molecules is maintained constant.

Volmer considered only the number of drops reaching critical size,

the number of vapor molecules striking the surface of the critical size

drop per unit time, and the number of molecules in a drop of critical

size.
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Becker and Doring derive the nuclei formation frequency purely

from kinetic considerations and take into account the evaporation from

the surface of the drop
s
as well as the condensation onto it This ap-

proach is considered by most authors to be better than others; however

their solution is rather difficult to apply.

Frenkel uses the method of Zeldovich to integrate the differential

equations of Becker and Doring and gets a much simpler derivation of

an equation that is almost identical to that of Becker and Doringo The
2 3

ratio of the result of Frenkel to that of Becker -Doring is (n*)
J and

this is considered minor,, n* is the number of molecules in a critical

sized drop.

A partial derivation of the nucleation rate equation is presented

in Appendix A. This derivation is necessitated by an apparent error

of 7T in the original equation presented by Frenkel (13).

For this analysiSj equation (A. 7) will be applied as the nucleation

rate equation.

4ffOT*

kT
3kT ^ 8)

where J = number of critical drops formed per unit volume per unit

time.

C. Limitations

1. Generally a as a function of temperature is not known and this

is a large factor in the result. Surface tension appears to

the third power in the exponent; hence a small error will have

a large effect upon J.
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2. The rapidity of expansion will show marked deviations from

the assumed quasi- stationary condition

3. The condensing flow may have sublimation directly from vapor

to solid which is not considered,

4. At high degrees of supersaturation the drop radius will be small
s

and Head (2) has shown that the variation of a with r is large

for drops of few molecules, Stever and Rathbun (5) have included

this effect into the Frenkel equation to obtain

8tt
'

rcrdr

v
kT,

J ^ "A — ^ a (r*) - r* \^\ e
°

/, mX 2 V Tim V 3rl *
'

(kT)- •"-
' r*/r *

Bogdonoff and Lees (8) have an approach which is entirely dif-

ferent from that of Head and Stever and which produces quite

different results. Until these theories have been developed

further
s

it is not practical to include either theorem in this

analysis.

From the previous discussion of the assumptions made in the formu-

lation of the nucleation theory and of the limitations above
?

it is apparent

that the best one can expect in an analysis such as this will be an order

of magnitude estimate of the condensation parameters and a qualitative

analysis of the flow conditions,

D. Growth Estimates

Heretofore, in order to calculate the formation of the critical drops,

we have considered the temperature of the liquid drops to be the same

as the surrounding vapor. In actuality, the impinging and vaporizing of
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molecules onto and away from the droplet leave a surface temperature

that approaches the saturated equilibrium value for the surrounding

vapor. This temperature difference allows for growth of the particle.

The growth of small drops, i, e. , r << mean free path, occurs by the

molecular transport of molecules onto the surface, some of which con-

dense, and by the conduction away of latent heat of vaporization by the

evaporation of a fewer number of molecules which leave at higher kinetic

energies.

Oswatitsch laid the basic groundwork for growth in a flowing vapor.

Stever (12) follows the method of Oswatitsch to develop ar> equation for

the growth rate of the small drop.

The development presented by Stever makes use of the kinetic

theory of free molecule flow (See Patterson (15)). Consider a drop

of radius r, temperature T , and saturation pressure (ps ),. with

a surrounding vapor of pressure p and temperature T. The heat trans-

fer from drop to vapor per unit time is

Q ^!eA4rf (T
nq

- T> Q

where a is an accommodation coefficient which varies from to 1,

depending on the vapor and liquid surface.

Also from kinetic theory the heat transferred to the drop surface

due to condensation is Lfp V kT/27T m where p VkT/27i m is the amount

of vapor (in the form of molecules) impinging on a unit surface and f is

the fraction which condenses. The energy being transferred to the sur-

face is equated to the energy being transported away to obtain an expres-

sion for f

;
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2a (T - T)

LT

the mass M of the drop is then increased by

dM^ . . r- _D 1 2 /? He

dt L V
7i

b VmT v
liq

;

4 3 2
Since MD -

^
77r PL and dM = 4?rr p dr.

dr J2a£. / k , v

dt
=

Vtt Lp
L

V mT VTiiq " rJ
•

If the calculation is made in quasi-steady steps, time can be expressed

as a function of step length and

Ar ^*.«JL-J* {T _ T)
*

ai0)v
7T L p v mT hq U

where the accommodation coefficient, a, is a constant, approximately

equal to 1 and T is the temperature of the surface of the liquid drop.

The accommodation coefficient a is expressed by Kennard (16) as

a (E. - E ) = (E. - E )
l w l r

where E. - Energy brought up to a unit area per unit time by the

impinging molecules

E - Energy carried away from the molecules leaving a

unit surface per unit time

E - Energy that the departing molecules would carry away

if they carried away the same mean energy per mole-

cule as does a stream issuing from a gas in equilibrium

at the surface temperature.
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Patterson (15) lists coefficients of the range from . 8 to 1. 0,

and Stalder (17) found that for free molecule flow an accommodation

coefficient of 0. 9 checks well with test results. Thus we arrive at

the statement, "approximately equal to 1. " This only applies for cases

where free molecule flow can be assumed to prevail.

On the other hand, where r approaches the magnitude of the mean

free path the heat removal is controlled by normal gaseous heat con-

duction. For this large drop Stever (12) gives the growth equation for

period of time, t,

/2k (T.. - T)

-=aM?~ l • (4 - n)

Other authors have made similar analyses, and Wegener (14) re-

cords the quasi- steady solution of Buhler (18) which includes an expres-

sion for the condensation coefficient.

(4. 12)

where T , the surface temperature of the drop, may be chosen as the

equilibrium saturation temperature of the vapor with respect to the

drop. As in the previous case, Wegener states (4. 12) is valid only

for small drops and the equation recommended for large drops is

merely a revised form of (4. 11).

Hill (11) notes that typical calculations of condensation nuclei indi-

cate very small sizes which are generally much smaller than the mean

free paths; thus only the free molecule equations need be considered.

dr
C p - , - ,2
P v 1 1

(T - T)
s

dx L p.. M \2nyl L 2a \

" rpL
L
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His analysis produces a growth rate expression of

3pdr

dt
2tL p t V2ttRTfg L

[RT
D

- RT] (4. 13)

in which U- = change of internal energy due to condensation. The

term T^ is droplet temperature, and Hill presents calculations to show

that the rate of drop temperature change is enormous compared to the

rate of growth. For water vapor the temperature approaches wet bulb

temperature in approximately the same time that it takes the number

of molecules in the drop to increase by a factor of 10. Hill uses this

in expanation of the assumption used by Oswatitsch that the drops al-

ways have wet bulb temperature during the growth period.

After a displacement,, the drop temperature will rapidly approach

the temperature at which d TV/dt - at a much greater rate of change

than dr/dt . Hill uses this to form an expression for T which depends

only upon the instantaneous values of r, p and T.

2
U
fg^ 2(7

pL
RV T (4. 14)

where £ is the fraction of impinging molecules which condense.

From the investigations on water vapor
s
nitrogen, air and a few

metal vapors it appears that for highly expanded flows the small drop

size is the general rule. The calculations will then be initiated by

applying (4. 10) as the growth rate equation and choosing drop tempera-

ture as the equilibrium saturation temperature of the vapor. The ac-

commodation coefficient in (4. 10) will be varied to study the effect and

a will be placed into the computer program as a data input so that accu-

rate values, when known, can be used for the calculation.





V. ANALYSIS

The basic equations are established in Sections II through IV. The

proper combination of these equations produces a theoretical solution

for the hypersonic expansion of a pure vapor in which a supersaturated

state occurs, Another solution is obtained for which there is saturated

equilibrium expansion in lieu of the supersaturated portion. Both solu-

tions, however, stem from the same basic model.

The basic model considered here consists of assuming:

lo "One-dimensional nozzle" with geometrically specified inlet

and diffuses

2, A pure vapor with specified stagnation conditions and known:

constant specific heats, latent heat of vaporization; surface

tension, for infinite radius as a function of temperature; and

saturation curve.

3, An isentropic expansion to r.he ponni of onset of condensation

and then diabatic flow through the region in which condensa-

tion is taking place*

A. Basic Assumptions

In addition to the assumptions of the basic model, this analysis

also embodies the multitude of simplifying assumptions which have

been included in the derivation of the basic equations. The type of

equations and the specific assumptions made are:

1. Flow equations

a. Mass flow is constant

b. Flow is one -dimensional and steady state

c. Volume of condensed phase is negligible when compared

to the total volume

27
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d. Nozzle is frictionless with no heat transfer across nozzle

wall

e„ Condensed mass is liquid, is uniformly distributed through-

out the gaseous components, and has same speed and tem-

perature as the stream

Prediction of onset of condensation equations

a. This embodies same assumptions as flow equations

b. No condensate is formed prior to the predicted point of

onset of condensation

Nucleation equations

a. Drops are formed by spontaneous nucleation only

bo Only drops reaching critical drop size continue to grow

c. Number of molecules of vapor is maintained constant

d. Saturation pressure corresponds to saturation pressure

of a droplet of infinite radius

e. The ordered velocity of the particles is neglected

f. Equilibrium values of the probabilities that one molecule

will leave from or condense on a unit surface and equilib-

rium particle distributions are assumed valid for the

non=equilibrium case

Growth rate equations

a» Drop radius is much less than mean free path

bo Accommodation coefficient, a
s

is approximately equal to

1.0

c. Drop temperature is assumed equal to the saturation tem-

perature that corresponds to the pressure of the vapor
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B. Supersaturated Expansion

The supersaturated expansion passes the saturation point without

any condensate being formed; therefore, a four step solution is required:

1. Isentropic equations from Shapiro (19) and NACA Report 1135,

are used to calculate the expansion of the vapor to the point of

condensation.

y

y - l

p = po T
o

(5.1)

M =
2 !

T
o

y- it - l (5.2)

p - p
1 y - 1 2

!

1 +
y

2
M

y- JL

y + 1

A*

M
2 („ y - 1 ,,2

y + 1
|

2 /

2 (y - 1)

1

U = [2 C (T - T)]'
p o J

5

(5.3)

(5.4)

(5.5)

2.

At any particular value of T the above equations are readily

evaluated for given p , T
, p , y, C and A*. The station atb *o' o' ^o' ' p

which these values apply is then determined from the given noz-

zle geometry?

The saturation point is established by an iterative balance of

the saturation curve equation with the isentropic flow equation.
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The saturation curve can generally be expressed in the

Q
form In p = B - —

, in which B and C are constants whose
oo T '

value depend upon the choipe of units for p and T. The equa^

tions which require joint solution are

sat B - In p
sat

P
sat

=P.I^I (5-7)

The isentropic relations above are then utilized to calcu-

late M ,, P ,, T ., A . p ., and U ,.

sat sat sat sat, sat sat

3. The point of onset of condensation is determined by taking

steps, AT, of super saturation and computing the flow param-

eters from the isentropic relations for each successive step.

The isentropic values of each incremental step in temperature

are introduced into the nucleation equations for critical drop

size and formation rate.

r T "
p T RT In p/p

<*• 0;

^L ' oo

j. =m 2

kT

4?7ar*

±~Jlm e
3kx

^L A

Note that choice of a very small AT will cause the first

step to remain very near the saturation point and the resultant

p/p = 1 will cause r* to approach an infinite radius, r* falls

off very rapidly, however, as the degree of super saturation

increases, and for most cases a choice of AT > 5 k is sufficient.
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The growth rate is zero for the critical droplet at the instant

of formation: therefore the nucleation rate for this increment is

N
T

. J
T
A
T
Ax

T (5. 8)

The mass fraction of condensate formed in this increment is

Ag
r

4 Tip
x

3m
N. (5.9)

The epsilon equations from the onset of condensation develop-

ment
5

(3. 5) and (3. 8)> are now used to determine if this amount

of condensate is sufficient to cause an appreciable deviation

from the isentropic expansion.

p AA C T
- 1 Ag (3.5)

€T AA

y -

M
7- 1 C T

P

Ag 1.8)

If the € is less than the assumed critical value then the same

calculations are carried out at step T + AT until the critical

value of € is equalled or exceeded. If exceeded, a bracketing

procedure is employed to improve the estimate.

All quantities computed for Ag at values of e < e ... .

critical

are discarded, and it is assumed that there has been no con=

densate formed prior to € - £ ... ,.

critical

The choice of Ax in equation (5. 8) will effect directly the
9

magnitude of N and of Ag in equation (5. 9). AA in equations

(3. 5) and (3. 8) is also a function of Ax so that in the evalua-

tion of e the effect of Ax is nullified. Calculations have been
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performed for values of Ax ranging from .01 to 1.0 cm to verify

that the quantity has no effect on the prediction of the point of

onset of condensation. Since the Ax that will be used for incre-

menting the calculations through the condensing portion of the

nozzle will be a required input to the computer program, it is

advantageous to use that same Ax in evaluating (5. 8).

The condensing portion of the flow requires a joint solution of

the nucleation and growth equations and the diabatic flow equa-

tions. The calculations are performed for increments of Ax

starting from the onset of condensation. Values are estimated

of p, T and U at the point i and Ag. is calculated from the

equations

.*
2a ji

i pL
RT In p/Pqo

J
i" kT

2cr/i
il/2 -

4 7T err
3

3kT

pL rv

(4.5)

(4.8)

N. = J. A. Ax.
l ill (5.8)

/o ,l/2M A \

AP ',£JL * —A (T _ T)
Ax

nr
j Lp 77 juTJ

V
s

L)
U

r.. = r. /. 1X + Ar.

(4. 10)

(5. 10)

477 p.
r3 " 1

Ag. =
m Y N. r..

2
Ar. + \ N. r*.

3

Li= 1

(5. 11)

gr gj-i + Ag
j

(5. 12)
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The subscripts i and j are numbered increments of x

starting from the condensation point, i acts as a label for

each group of droplets of a particular size and denotes the

particular increment in which these drops originated as crit-

ical sized drops, j denotes the increments presently under

consideration. Thus a designation r. „ denotes droplets

which were formed as critical drops in increment 1, have

undergone the growth Ar„, and are now undergoing the

growth Ar~.

Using the above approximate values of Ag and g and the

unknown values of AA and A the equations from Section II

are solved for p, T, p and U.

Ap
+

P

AU— +
AA
A

£E- UAU
P

(1 -g) 5 T

Ap_
P P

AT
T

Ag
(1 -g)

(2. 7)

(2. 8a)

2.9)

UAU+C AT-LAg = (2.12)

The solution of the flow equations is accomplished by the

following iterative procedure:

a. assume AU and compute U. = U. - + AU

b. solve (2. 12) for AT and compute T. = T. + AT

c. solve (2. 1) for Ap/p

d. solve (2. 9) for Ap/p

e. solve (2. 8a) for AU and check with value from ste^p (a).

Improve the assumed AU and continue until a solution is

obtained.
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These corrected values of p, T and U are now used to

resolve the equations for Ag, and the process is continued

until a set of flow parameters which satisfy both sets of

equations is obtained.

This iterative procedure is continued for each increment

Ax up to a specified x , usually the end of the nozzle.
max'

This set of equations could be evaluated from the satura-

tion point onward in order to obtain a more accurate predic-

tion of the onset of condensation. It is obvious, however, that

the magnitude of the calculations involved is formidable; and,

the slight error induced by attempting to predict the point of

onset of condensation, does not justify the refinement. This

is especially true since the approximations in the basic

equations are so gross.

C. Saturated Equilibrium Expansion

The saturated equilibrium expansion is a gradual process with

condensation starting at the saturation point and equilibrium flow

being maintained throughout. This occasionally occurs for slow

expansions of certain vapors and for cases in which the impurity

content is high. In this analysis the saturated equilibrium expansion

is presented only as a comparison with the supersaturated case.

The calculations are greatly simplified in that the mass fraction

of condensate can now be specified by the Clausius-Clapeyron

equation

dp _ L/i_p_
(0 ^

dT" R
T
2

Kdm6)
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This equation and the flow equations (2. 7), (2. 8), (2. 9) and (2. 12)

usually are integrated and expressions are written for each param-

eter (see Wegener (14) or Daum (10)). By proper manipulation and

combination the integrated equations can be reduced to one involving

g.

C /

g^Tln^-f 1 -^ (5.13)

sat \ sat

j

However, in this analysis the flow equations are programmed in the

incremental form for the supersaturated case, so it is convenient to

write (5. 13) in the form

Ag^T.ln^-Jl-^-j-g.^ (5.14)

sat \ sat/

and to use this for the Ag expression in a solution similar to that

used for super saturation.

1. The saturation point is established in the same manner as

for the supersaturated case. Small increments of length,

Ax, are started at the saturated point.

2. An incremental increase in the mass fraction of condensate,

Ag, is assumed for the step Ax. With assumed value of Ag

and known value of A the flow equations are solved for p, p,

and T.

AP
+
AU

+
AA = Q (27)

p U A

f-—^fT (28a)
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AP =
A£

+
AT Ag_

(2 . 9)
P P T (1 - g)

UAU + C AT - LAg = (2. 12)

Equation (5. 14) is solved to check and correct the assumed value of

Ag and an iterative procedure is established to obtain a satisfactory

solution of the five equations. Again this is continued in a step by

step process until the solution is complete.





VL DIGITAL COMPUTER PROGRAM

A major task in this study has been the adaptation of the mathematical

analysis of Section V to the digital computer. The description contained

herein is presented for the future user of the program and in no way

covers the myriad of detours encountered between the input and output

statements.

The Computer Center of The University of Michigan has developed

a Michigan Algorithmic Decoder (MAD) computer program which com-

piles much faster than the commonly used FORTRAN program. The

computer program for this investigation has been written in the MAD

language and can be translated into FORTRAN if desired. The IBM 7090

computer program for the condensation of a pure vapor is presented in

Appendix B.

The program has been subdivided into a main program and six

subroutines. The subroutines enable easier modification of the program

and provide a greater flexibility in its use. Statements as to the func-

tion of each of the calculations, the input parameters, and the obtainable

results are provided in the program at the beginning of each subroutine.

Appendix B also includes a list of the program symbolic names assigned

to the parameters used in the equations of Section V.

A brief summary of the subroutines follows:

1. Isentropic flows (IFLOWS)— Given T, this program solves

the isentropic flow equations for p, p, U, M, and A.

2. Condensation Flow (CFLOW)— For given g and A, this pro-

gram solves the diabatic flow equations (2. 7 through 2. 12)

for p, T, p, M, and U.

-37-
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3. Nucleation Theory I (NUCLEI)— From nucleation theory equa-

tions (4. 5, 4. 8, 5. 8 and 5. 9), NUCLEI computes the condensate

formed due to the nucleation of critical sized drops only, i. e.

,

growth is not included in this portion. This subroutine is used

to determine condensate formed for that portion of the main

program which determines the point of onset of condensation.

4. Nucleation Theory II (NUCLE2)— This subroutine evaluates

the growth equation (4. 10)« NUCLE2 is used in conjunction

with NUCLEI to determine the amount of condensate present

for all calculations downstream from the point of onset of

condensation.

5. Nozzle (NOZZLE)— The geometry of the nozzle is placed in

this subroutine, from which A, AA, or x can be determined.

6. Vapor Parameters (FRHOL, FL, FSIGMA)— The parameters

p. , L and a are placed in this subroutine as functions of T

or as constants and are evaluated as called upon by the

Main Program.

The Main Program consists primarily of a proper utilization of

the subroutines. The operations by the Main Program appear in the

following order:

1. Read in the input data.

2. Use IFLOWS to expand isentropically from stagnation condi-

tions.

3. Match isentropic equations to saturation curve to determine

saturation point.

4. Use IFLOWS for expansion past the saturation point and

calculate Ag from NUCLEI.

5. Evaluate epsilon equations (3. 5 or 3. 8) to determine onset

of condensation.
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6. Downstream of the onset of condensation, a joint solution of

NUCLEI, NUCLE2, and CFLOW is obtained at each incre-

ment, Ax, and the parameters x, N, Ax, A, AA, P, p, T,

U, M, r*, r.„, Ar, Ag and g are stored for later print out.
l
t

The saturated equilibrium expansion is compiled in a very simple

program and need not be presented at this time.

The Nozzle and Vapor Parameter Subroutines are included in a

Program Common such that any of the included parameters, when used

in the Main Program, are automatically evaluated and returned.

Conditional statements are inserted in the program to account

for the possibility of condensation occurring in either the converging

or diverging portions of the nozzle, the possibility of reaching the end

of the nozzle without any condensation having occurred, and the failure

of the iteration of NUCLEI and NUCLE2 with CFLOW to converge.

The development of the equations is such that any consistent set

of units can be used for the problem. However, it was found that

minimum scaling was necessary if the problem was worked in a cgs

system of units. The problem, as written, is compatible with the

cgs system of units and a list of the proper input data is presented

in Appendix C.





Vn. CALCULATIONS AND RESULTS

The calculations performed in this study are divided into four

parts:

1. A test of the program by hand calculations and a test of the

method by comparing the results for a nitrogen expansion

with the experimental results of Willmarth (3).

2. Justification of the assumptions of small radii, no drag, and

accommodation coefficient approximately equal to one in the

basic assumptions. Verification of the prediction procedure

for the onset of condensation.

3. A variation of latent heat, specific heat, surface tension, and

nozzle geometry for the nitrogen expansion to observe the

induced effect of each parameter.

4. Application of the theory to metal vapors by computing the

expansion from an initial pressure of approximately one

atmosphere of copper, tin, lead, and zinc vapors.

A. Validation of the Program

The input data for the calculations performed in this study are

tabulated in Table C-l of Appendix C. A reference to Nitrogen (1),

Zinc (I), etc. , indicates the set of input data from which the indicated

results were obtained. Any additional modifications of the input data,

such as a change in cr, L, or nozzle geometry, are listed directly on

the plot of results. An explanation of the input data required, the

proper units for each parameter, and the references (20-24) from

which the vapor properties were obtained is also presented in

Appendix C.

-40-
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Initially the computer program was divided into small segments

and hand calculations were performed for Nitrogen (I) to verify the

computer results. With the assurance that each small segment was

working properly, the entire program was assembled and hand calcu-

lations were performed to spot check the calculations of the saturation

point, the point of onset of condensation, and the first few incremental

steps of the condensing flow regime*

With this degree of confidence in the program^ the next step was

to check the theoretical results with known experimental results. The

Nitrogen (1) input data is designed to approximate an experimental

test of the condensation of nitrogen performed by Willmarth (3),

Nitrogen properties from NBS Circular 564 (24) and the Interna-

tional Critical Tables (23) required extrapolation below 70 K for the

surface tension and the latent heat of vaporization* These values are

generally valid only to within ±10% and, as will be shown later, this

becomes extremely critical in the case of the surface tension, The

vapor pressure curve for nitrogen is reasonably well known, and it

was approximated by the Clausius-Clapeyron equation (see Fig. C-l).

For comparison with experiment the calculations for nitrogen were

carried out in full from the saturation point onward and no attempt was

made to predict the point of onset of condensation. A comparison of

the experimental results of Willmarth (3) to the theoretical prediction

of the condensation of Nitrogen (1) is presented in Figure 1. The the-

oretical curve for Nitrogen ((I) shows a degree of supersaturation of

approximately 3. 5 degrees (20%) lower than is indicated by experimental

results. This is expected in that the amount of impurities in the experi-

mental nitrogen was unknown and this advanced nucleation would cause

an early break. However, of greater importance is the degree of
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uncertainty in the extrapolation of the available surface tension data.

In anticipation of the effect of a on the theoretical results, a second

extrapolation was chosen for cr. The a equation for Nitrogen (II) re-

mains within the ± 10% accuracy of the original surface tension data

and, in actuality, gives a value for o which is only 7% less than the

a from Nitrogen (I) at the onset of condensation.

The theoretical prediction for the condensation of Nitrogen (II)

compares most favorably with the experimental results in Figure 1.

The strong influence shown by only a 7% change in o will be discussed

more fully at a later point in the discussion. Figure 2 presents a

more complete comparison of the theoretical results for Nitrogen (II)

as compared to the experimental results of Willmarth (3). The isen-

tropic and saturated equilibrium expansions are also presented in this

figure. The theoretically calculated results presented in Figure 2

employ the full calculation of the nucleation and flow equations for the

entire length of the nozzle. This is significant in that the flow prop-

erties prior to the "condensation shock" lie on the isentrope and the

flow properties after the "shock" tend to approach the saturated

equilibrium expansion. This is the expected result, and it gives

further confidence in the program.

The experimental points of Willmarth (3) fall on the isentrope as

well as along the "condensation shock", which indicates a proper esti-

mate of the physical expansion and validates the program. The close

correlation between theoretical and experimental results within the

"shock" itself lends further support to the basic nucleation theory of

the condensation process.
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Willmarth (3) obtained the pressure results, p, p and p ' by

direct measurement. The effective area ratio, (A/A*)
,
tempera-

ture, T, and mass fraction of condensate, g, were then calculated

from the measured quantities by a joint solution of the flow equations.

B. Justification of Assumptions

1. Drop Size

A typical distribution of maximum and minimum droplet

radius is presented in Figure 3 for the Nitrogen (I) expansion.

Note the very short span over which the nucleation of critical

sized drops, J curve, takes place. The average critical sized
-8

drop has a radius of 4. 5 x 10 cm, and the largest particles
-7

which leave the nozzle have a radius of 8 x 10 cm. The radius

of the nitrogen molecule from Loeb (25) is approximately
-8

1. 5 x 10 ' cm and calculated mean free paths vary from the

-4 -3
order of 10 cm at the onset of condensation to 10 cm near

the nozzle exit. According to Stever (5) the drop radius is

larger than the minimum required to contain the 10-12 molecules

necessary for the application of macroscopic theory.

Therefore it is not unreasonable to assume that small drops

are the general rule, that the no drag approximation is valid,

and that since r << mean free path the samll drop growth equa-

tion can be used.

2. Accommodation Coefficient

The effect of a variation in a. is presented in Figure 4. Small

variations near the value of a - 1. have very little effect. How-

ever, since the growth equation is a direct function of a
}
the curve

for a = 0. 1 differs markedly from a = 1. 0. Fortunately, the known

values for a are from 0. 8 to 1. so that the choice of a = 1. is a
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reasonable one. The computer program is so constructed that

accurate values of a, when Known, can be inserted as input

data.

An additional feature of Figure 4 is the indication that growth

has little effect up to the "break" point but thereafter controls the

remainder of the condensation process. This is further brought

out by the plot of J in Figure 3, which indicates the rapid nuclea-

tion of a large number of particles to start the "shock" and then

a continuing growth of these particles until saturated equilibrium

conditions are met.

3. Point of Onset of Condensation

From the previous discussion and from Figure 3, it appears

that little or nothing happens in regard to condensation until a

degree of supersaturation is reached for which the critical drop

radius is very small. As r* from equation (4. 5) becomes small

2
the exponential term, which contains r* , ceases to be the pre-

dominant term in equation (4. 8) and J increases rapidly.

r
p T

RTlnp/p {* mi>)

J =

4tt gr*
' p | 1 ^ / 2cr/i " 3k,T

jkT/ pL
VvrNA

e °" x
(4. 8)

The epsilon of Section III should then predict the approximate

point of onset of condensation. Several calculations for various

values of € are presented in Figure 5. e = indicates that the full

calculation of the nucleation and flow equations was carried out

from the saturation point onward. The choice of epsilon results





-45-

in only a minor error when compared to the possible 10% error
-3 -4

in surface tension. Epsilon values of 10 and 10 give almost

identical results, thus e = . 001 appears to be a suitable choice

for the expansion of nitrogen.

Also in agreement are Head's (2) calculations for water vapor
1 fi

in which he indicates that, the attainment of J = 10 droplets per

centimeter cubed per second signifies the point at which the con-

densation shock will break away from the isentrope. Several
1 fi

calculations on the computer indicate that J = 10 at the break-

away point for nitrogen also. At present, however, this author

sees no justification for predicting that this will be true for other

vapors as well.

C. Variation of Parameters

1. Surface Tension

As indicated previously, the variation of a is the most critical

aspect of the theoretical prediction of the condensation phenomenon.

From equations (4. 5) and (4. 8) it can be seen that a enters the

exponential term of J as a third power. Thus for a 10% change

in a the nucleation rate changes by several orders of magnitude.

Figure 6 and Figure 7 present several variations in a to show the

large effect that this parameter has on the degree of super satura-

tion. Later results will show that the effect of other parameters

is minor when compred to surface tension.

There appears here a possible method of improving the surface

tension data. The results of a closely controlled experimental vapor

expansion could be used as a reference plot and surface tension

varied on the computer until a matching plot is obtained. Providing
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the other parameters are reasonably well known, this should pro-

vide a better estimate of a than merely extrapolating a curve far

away from the few experimentally determined values that are

available.

2. Specific Heat

C is reasonably well known and only varies a few percent

over the range considered in this analysis. For this analysis

C is chosen as a constant, and from the plot in Figure 8 the

constant assumption for C appears reasonable. The effect of

a 10% variation in C is negligible when compared to an equiva-

lent uncertainty in a.

3. Latent Heat of Vaporization

Latent heat is generally a weak function of temperature. For

Nitrogen (T) the variation in L is only 9% over the range of tem-

perature from saturation to the nozzle exit. From the plot of

variations in L presented in Figure 9 it is evident that the con-

stant latent heat assumption in the basic equations is a reasonable

assumption and any variation in L is negligible when compared

to the effect of an equivalent variation in a.

4. Nozzle Geometry

The condensation process is a function of time, so it is ex-

pected that the rate of expansion should have some effect on the

"condensation shock. " Theoretical calculations were performed

for the Nitrogen (I) expansion in a two dimensional nozzle for which

the exit half-angle was varied from 9. 75 to 45 degrees. Nozzle

lengths were selected so that a Mach 8 nozzle was used for each

run. The results of varying the rate of expansion for Nitrogen (I)

are presented in Figure 10 and Figure 11. In Figure 10 it is noted
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that the faster expansion causes the vapor to supersaturate to a

lower temperature before the onset of condensation. The "conden-

sation shock" is thinner for the fast expansion, it is (in physical

dimensions) 3 cm for the 6
1

,~ = 45 expansion versus 5 cm for

o
the 9

1
/e> = 9. 75 expansion. 9

1
,~ is the nozzle exit half-angle.

This is somewhat misleading because, for Figure 11, in which

all nozzles are referenced to a non-dimensional length for a Mach

8 nozzle, the faster expansion tends to smear out over a broader

relative length. The plot of the percent of condensed vapor in

Figure 11 indicates that the higher the rate of expansion the less

moisture is formed in the nozzle. It appears that for sufficiently

high rates of expansion a condensation free flow can be obtained.

This has been borne out by "condensation free" experiments in

the past.

D. Application to Metal Vapors

As stated in Section V, the theory as developed herein should apply

to metal vapors. The primary interest here is in the finding of a metal

vapor that will condense in a highly expanded flow and that is suitable for

laboratory experimental use. Hill (11) has predicted that sodium and

potassium will condense; however, these vapors introduce critical han-

dling problems. Copper, zinc, tin and lead appear to have possible experi-

mental use, with copper being the preferred vapor of the four.

Theoretical calculations were performed for a two-dimensional nozzle

with a constant slope diffuser for the metal vapor input data listed in

Appendix C.
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1. Copper

Fortunately, copper vapor is theoretically predicted to condense

for a fairly rapid expansion in a two-dimensional nozzle with a 20

degree diffuser half -angle. The results are presented in Figure 12

for an expansion in a Mach 10 nozzle from an initial pressure of

approximately one atmosphere and an initial temperature of 3000 K.

The "condensation shock" occurs very near the throat, and the change

is very rapid with the "shock" spanning less than a centimeter of

nozzle length. The average critical drop radius is approximately
-8

3 x 10 cm and the maximum droplet formation rate is of the order

19
of 10 drops per centimeter cubed per second. Again the onset of

1 fi

the condensation appears to be marked by a value of J = 10 or

17
10 drops per centimeter cubed per second. Copper could be a

suitable choice for experimental work in rapid expansions because

the large fraction of condensate formed in this theoretical solution

indicates that higher rates of expansion and higher initial tempera-

tures and pressures probably could be used without resulting in a

"condensation free" expansion.

2. Zinc

Two computer runs were made for zinc, and neither run pre-

dicted any detectable amount of condensate. Zinc (I) was computed

for a 45 degree diffuser half-angle and initial pressure and tempera-

ture of approximately one atmosphere and 1500 K respectively. The

results of this calculation are presented in Figure 13 where a suffi-

cient number of the calculated points are plotted along the isentrope

to show that the expansion is essentially isentropic. This indicates

a negligible amount of condensation. The tabulated calculations from
~8

the computer give a maximum g of 1. 48 x 10 at the nozzle exit.
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12
The maximum nucleation rate obtained is J = 2 x 10 drops per

centimeter cubed per second and the critical drop radius is

-8
2 x 10 cm. It was anticipated that a slower expansion with a

lower starting temperature would predict a detectable amount of

condensate. Zinc (n) was run on the computer for a 20 degree

diffuser and a pressure and temperature of one atmosphere and
o

1300 K respectively. The results in Figure 13 again plot along

the isentrope and indicate no condensate. The maximum g of

= 5
4. 8 x 10 for the Zinc (II) run indicates some movement toward

14
condensation. The maximum nucleation rate of J - 3 x 10 drops

per cubic centimeter per second is obtained at a vapor temperature
-8

of 375 K and the critical drop radius is again 2 x 10 cm. The
14

J -- 10 value with no condensate formed lends support to the
1 fi

J = 10 criterion for the onset of condensation. A slower expan-

sion of zinc probably would produce a condensation shock; however,

this would be out of the desired rapid expansion regime. From

the results of the Zinc (I) and Zinc (II) runs it appears that for

rapidly expanding flows zinc vapor may not condense.

3. Tin and Lead

Unfortunately, the computer runs for tin and lead failed to

converge in the CFLOWS Subroutine. The reason for this is not

immediately apparent, and a further investigation will have to be

made before any definite conclusions can be drawn. However, the

few points that were calculated show promise that both tin and leapl

will condense in a rapid expansion.





vm. CONCLUSIONS

An adaptation of the digital computer to the analysis of the condensation

of a flowing vapor is possible, and the program for a pure vapor is pre-

sented herein., Theoretical predictions of the condensation of nitrogen,

copper and zinc indicate the following:

1. The nucleation theory of Frenkel (13) provides a reasonable

approximation to the rate of formation of condensate in a flow-

ing vapor.

2. The theoretical prediction for the condensation of nitrogen

compares surprisingly well with the experimental results of

Willmarth (3).

3. A small drop size is the general rule. The critical drop radius

-8
is of the order of 10 cm and droplets of maximum growth

- R
rarely exceed 10 cm.

4. The nucleation rate controls the onset of condensation, and a

prediction procedure based on this parameter might prove more

useful than the one proposed herein.

5. The growth equation plays a predominant role once condensation

has started and a more accurate expression would be beneficial.

6. The surface tension is the most influential parameter. Generally

the value of v is uncertain and this leads to the largest source

of error in the program.

7. Values of specific heat and latent heat of vaporization are not

critical, and treating these parameters as constants is a rea-

sonable assumption.

8. The condensation process is very sensitive to rates of expan-

sion, and for rapidly expanding vapors a "condensation free"

expansion is possible.

-=50-
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9. Copper vapor will condense in rapidly expanding flows and

appears suitable for experimental work in the condensation

of metal vapors.

10. Zinc vapor does not condense for high rates of expansion from

one atmosphere pressure, and runs for lower pressures and

temperatures are recommended.
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60 K

Figure 1. Theoretical Results for Nitrogen Compared
to Experimental Results of Willmarth (3).
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Figure 7. Effect of Variations in Surface Tension on the Predicted

Super saturation of Nitrogen.
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Appendix A

DERIVATION OF THE NUCLEATION RATE EQUATION

This is in no way intended to be a complete derivation of the nuclea-

tion rate equation. The full derivation can be found in complete detail

on pages 366 through 400 of Frenkel (13). A scant derivation is presented

in Stever (12), pages 532 to 540.

There appears to be an error of tt in the final equation presented

by Frenkel, so enough of the derivation will be reproduced here to clear

up this discrepancy. The solution is a statistical problem of kinetic

theory.

In an equilibrium distribution of droplets where <£ <$r the fol-

lowing relation must hold.

N S a = N
1
S

1 (3 (A. 1)nnn n-ln-ln-1

where and <£.. are the thermodynamic potentials of the vapor and

liquid drops, respectively. N and N are the number of droplets

containing n and (n - 1) molecules, respectively. S and S. are

the surface areas of droplets containing n and (n - 1) molecules, respec-

tively, a is the probability that one molecule leaves a unit surface

area of a droplet containing n molecules.

/3 is the probability that one molecule condenses on a unit surface

area. Assume a and 3 ., to remain valid for the non-equilibrium case
n n - 1

(</>,. < ) and modify the distribution N to a non-equilibrium distribu-
liq ^v n

tion f . The equation will no longer balance so (A. 1) becomes
n
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J = f
1
S

1 |3 , - f S a £ (A. 2)
n n-ln-ln-1 nnn

where J represents the increase per unit time of the class (n) due to

condensation of the vapor on the surface of droplets in class (n - 1) over

the number, which, owing to evaporation, pass from the class (n) to

the class (n - 1).

The rate of change of the number of drops of a given class is deter-

mined from (A. 1) and (A. 2) to be

? t n n - 1

Frenkel employs the method of Zeldovich which utilizes the feature of

the sharp maximum of A<£ at n* to solve the equation. By considering

only values of n > 10 say, quantities appearing in the equation will

only vary slightly when n is changed by 1 and can be treated as functions

of a continuous variable. Equation (A. 3) can then be integrated and the

result is presented as equation (27b) on page 396 of Frenkel (13).

where N - ^= = number of molecules in the supersaturated vapor

D(n*) = S(n*) j8 - diffusion coefficient = {An )

ly/3
3
2/^ 3 V

u
2' 3

n*
2' 3

P

V2tt mkT
A^ 4 * 2
A<3> = ^-7T ar*

7 - 7T (0i •

_
)/n*

' 3
l hq v"

substituting these values into (A. 4) produces the equation

2,p,f torA A (V '^
J = 2r*' ^ exp - -^r-n/j ^ (A. 5)
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or, writing in the form of Frenkel's final equation (28a)

^ - 2r

*

2 4exp -^S -VA^ " V
n* (A 6)N

n
^
r kTp? 3kT j V3 m n ^ bJ

In comparing (A. 6) with Frenkel's equation (28a), it is noted that Frenkel

does have an extra factor of tt in the coefficient as noted by Courtney (9)

and others.

The desired equation for this analysis is obtained by substituting

2(7 V
li

the value of (<£,. - ) from the critical radius equation r* -
liq v * 0-0

14 3
hq

'

and the value n* = —— - tt r* into equation (A. 5)

liq

4tt r*'

j » 2r * 2 |J2_1 exo -
4?7(Jr * h/- ^ Uq

J " 2r
kT eXP

3kT V3 mr* „ *3

2 , ,2/ , _ .2
2r±_

2r*
2 Uq

1

p 1 / 4?rCTr*

kT
eXP " 3kT / VTimV tt m

o 2
T / P \ xr -i / 2<7 47TOrr* / A n v

J =
(kr]

V
liq V^S 6XP - "IkT" (A - 7)

To eliminate the necessity of calculating molecular values of

V, . = t^t-— and m = tr~ . the equation for computing J in this
hq NAPL NA

analysis is written

J f
JL|

2
J_ |1H!l\

1/2

exD .
4^(r*)

2

(A 8)
kT

l <>L " NA
P 3kT





Appendix B

IBM 7090 DIGITAL COMPUTER PROGRAM FOR
CONDENSATION IN HIGHLY EXPANDED FLOWS

Written in Michigan Algorithmic Decoder (MAD) Language

This program is valid for a pure vapor with constant specific heat

and constant latent heat of vaporization.

The cgs system of units is utilized throughout and cgs values for

the universal gas constant, Boltzmann's gas constant, and Avogadro's

number have been included within the program.

The symbolic names of parameters used in the program are listed

and defined at the beginning of each applicable section of the program.

The units for and input data required for utilization of this program

are presented in Appendix C.
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SCOMPILE MAD. PRINT OBJECT. PUNCH OBJECT MAIN 001MAIN OOO
R AERONAJTICAL ENGINEERJNG
R NOZZLE CONDENSATION' RESEARCH"

_R
R ' MAIN "PROGRAM"""

_R
R R E S E A R C H— J7" GRITF I N " P R GR AM MING— lTTTARD I N"(T~ TilL Y"T 96

3"

"

R

'"'PROGRAM COMMON """GAMMA MOT Bi" C» CPT "l".™RHOL". "~S IGMA
_R

START READ "DAT

A

R

RTHI S "DA fA "SHOULD~TN

C

lUD E

_R
""'

R'PZERO * ='Tn1Ti'AL PRESSURE
R RHZERO = INITIAL DENSITY
"R TZ~ERO =ntNlTl^L

_
TETTFrrRATURE

R P E _ =_ _I_S E N T ROPI C EXI T _P_R ESSUR E_._T HIS IS USED AS AN _
R " INITIAL APPROXIMATION TO THE~~"S"ATUPXrf6"N"l^ESSURET~
R

R GAMMA'" ='"RAT'id OF" THE S'PE'C I FTC HEATS"
R^MU = MOLECULAR WEIGHT OF THE VA POR

~~R~ C

P

-
" = S P"E C I F I C H E A T A

T
~ CON S TA N T PRESSURE

_RJ- = LATENT HEAT (NOTE VAPOR PAR AMETE RS SUBRO UTINE)
"R~ SIGMA " = ~S U R F AC"£~~TFNSTOTTTNOTE ~V~A POR~ PA RAM E T E R S S U BR U

1

1 N E )

_R_
R

_ _ _._
^ ^ ^

_._. „ . ^_^j._
e

-._„™™_™ .

R B_ = SATURATION _CURVE _CONSTAN_T
~~R ALPHA"" "^"ACCOMODATION COEFFICIENT

R

~R~ DELX =~ I NCR E MEN T~A~L~"STEP"''~I N ~XTTHE""N Z Z L E "CONDlT! ON S ""WILL
-

R BE COMPUTED AT__XCO_N + DELX » XC0N+2*DELX . . • WHERE
'"R XCON IS"" THE "CONDENSATION" POINT.

R XRANGE__=_ LENGTH OF INTERVAL. STARTING AT THE CONDENSATION
~R

"

POINT. "IN WHICH THE FLOW CONDI TI ONS "WILL BE
R COMPUTED. _^

""FT XHOINT~=" THE CONDENSATION POINT IS ASSIGNED A SUBSCRIPT OF
R ZERO. ONLY THOSE POINTS WITH SUBSCRIPTS XPOINT.

""W 2*XP0TNT»/. . WILL BE PRINTED.
R

""R" TRANGr"=""PROGR"AM~"¥TlL LOOK FOR A CONDENSATION POINT I NTHET
R J_N T E RV_A L (TSA T » TSAT- TRANG E ) . WHE RE TSAT IS T H E—
R~~ COMPUTED SATURATION TEMPERATURE.

__R DELTAT = INITIAL_STEP SIZE USED IN LOOKING_FOR CONDENSATION
R "

" POINT • IN THE INTERVAL rf'SA'f»Ts'aT-TRANGE>V
_R_ PERCNT = J.F EPSLON(T) EXCEEDS PERCNT IT IS ASSUMED THAT

R
"

CONDENSATION HAS STARTED.
_R_

PRINT COMMENT $1 NOZ
_1ZLE_ CONDENSATION RESEARCH $

~P"RI NT "COMMENT "SO ""INITIAL CONDITIONS*
PRINT RESULTS PZERO . RHZER O * TZERO .PE

"PRINT COMMENTED" " CONSTANTS""DEPEND" I NG~" ON THE VAPORi
PRINT RESULTS MU.CP . GAMMA » S I GMA »

L

PRINT COMMENT JO SATURATION CURVF "CO N S TAN T S
$~

"

PRINT R E S U

L

TS C. B

PRINT TUWAl N T $ PT?OGRA"M"PARa"METER"S$"
""

PRINT RESULTS DELX . XRANGE , XPOI NT .ALPHA
EXETU TE~NOZ ZTE . I J'TFTROATSYOTTA'S T A R )

"
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F I ND SATURATION PUINI Br MATCHING ISENTRCPIC
SOLUTION Tu THE SATURATION CURVE PRESSURE.

PRESSURE

P = P =

Z=GAMMA/ (GAMMA-1 .

)

T = C/ U.'-E LOG. (P ) )

PSAT=PZ c RO*( (T/TZEKO) .P. Z )

TEST=.ABS.

(

1.-PSAT/P1-.001
WHENEVER TEST .L. 0. » T RAN^FER 10 -^2

P=P+.5*( PSAT-P )

TRANSFER TO SI
TSAT=T
EXECUTE I FLOWS. ( AST AR . CP . GAMMA » PZE RO

,

RHZERO » TZERO )

EXECUTE I FLOW. ( A SAT. MS AT , PSAT.RHOSAT ,T SAT .US AT

)

Z=MSAT
EXECUTE NOZZLE. ($INVERS$tZ»A SAT)
WHENEVER Z( 1 ) .E. 1 . .TRANSFER TO S3

PRINT COMMENT i4 THE SATURATION POINT
1 THE NOZZLE. THE PROGRAM WILL CONTINUE. S

X S A T = Z

MDOT=ASAT*RHOSAT*USAT

FOUND IS NOT INSIDE

PRINT
PRINT
PRINT
PRINT
PRINT

COMMENT
RESULTS
RESULTS
RESULTS
RESULTS

i2 COMPUTED
PSAT.RHOSAT.TSAT
MSAT »USAT
XSAT .ASAT
MDCT

SATURATION CONDITIONS^

FIND CONDENSATION POINT BY MATCHING ISENTROPIC FLOW

SOLUTION TO THE NUCLEATION THEORY SOLUTION GIVING THE

AMOUNT OF CONDENSATE AS A FUNCTION OE AN ASSUMED FLOW.

DELT=DFLTAT
ITERF=0.
TMIN=TSAT-TRANGE
WHENFVFR TMIN.L.C
P~RlNT COMMENT %2

IN POI NT SEARCHi
P~RTNT RESULTS
PRINT RESULTS

T M 1 N = .

PARAMETERS DETERNTTn: condensaTIo

TSAT » TMIN .1JLLT

PERCNT

TMIN

T^TSaT"
ITER=0.
'T=T-DELT

WHENEVER
- x= i

.

ITERF= ITERF + 1 ._
PELT=.5*DELT
WHENEVER ITERF.L
WHENEVER Z.E.O
PRINT COMMENT

1 NO CONDENSATION POINT
TRANSFFR TO START

END OF CONDITIONAL

10. tTRA NSFER TO

..TRANSFER TO S7
40 TEN PASSES OVER

S4

TEMPERATURE RANGE SPECIFIED.
INDICATED.S

EXECUTE
Z = M

EXECUTE

I FLOW. (A ,M,P .RHO.T.U)

NOZZLE.

(

SINVEl
WHENEVER Z( 1

)

! s i » Z » A

)

.E. 0.





z=o.
TRANSFER TO S6
PRINT COMMENT SO TEN PASSES OVER THE FULL RANGE OF THE NOZZLE

1» NO CONDENSATION PO INJ__I_NDJ_CAJED. $

"TRANSFER TO" START"
END OF COND ITIONAL

EXECUTE NOZZJ.E. [SAREAS ^XHDELX , Z )_~
"D'ELA = A-Z ~

"~
" "" ~ ~" "

_R

L =FL. (T )

'

TDROP=C/

(

B-ELOG. (P)
)

RHOL=FRHOL« ( TDROP)
SIGMA=FSIGMA. (TDROP)
EXECUTE NUCLEI. ( A ,DELX »MDOT»P»T »RAD.NDOT »DELG)

R

R COMPUTATION OF EPSILON <T)
R

EPSLON= ( GAMMA- ( l./(M*M) )

)

/(GAMMA-1. )

WHENEVER M.J-.l^.^EPSLON^l^
""EP'SLON =A*fl.-(L/(CP*T) )*EP~SLON)
EPSLON=EPSLON*(DELG/DELA)
EPSLON=.ABS. EPSLON

R

"""WHENEVER EPSLON . L . PERCNT * TRANSFER TO S5~
T=T+DELT

" DELf = .5*DELT
ITER=ITER+1.
WHENEVER ITER.L.LITER»TRANSFER TO S5

R

R L I T "EFTTH A L F - I N T E R"VATTSTEPS""KA V E"BE E N~PE RF OR~MED~ AND

~

R A CONDENSATION TEMPERATURE HAS BEEN FOUND.
R

""""'

PRINT COMMENT $0 HAVE FOUND TEMPERATURE THAT SATISF IES THE CO
1NDIT IONS" FOR THE CONDENSATION POINTS
PRINT RESULTS T.DELT
TCON=T
EXECUTE IFLOW. < ACON »MCON ,PCON .RHOCON , TCON » UCON

)

Z=MCON
EXECUTE NOZZ LE. ( S I NVERSS »Z » ACON

)

" W H ENEVER Z ( IT. E . 1 . » IRAN S F E R" TO " S 8

PRINT COMMENT S4 THE CONDENSATION POINT FOUND IS NOT INSI
IDE THE" NOZZTET'THE PROGRAM WILL CONTINUE. S

XCON=Z
L=FL.(T)
TDROP = C/ (B-ELOG. (PCON)_)
RHOL=FEHOT. (TDROP )

SIGMA=FSIGMA. ( TDROP )

""EXECUTE NUCTlET. '"(ACON"»DE'LX»MDOf »P'CON'f TCONf RADtNDOT"»D'ELG)
G = DELG
P"RI'N'T COMMENT $4 "~ '"COMPUTED "CONDENSATION CONDITIONS*
PRINT RESULTS PCON >_RHOCON » TCON
PRINT RESULTS" MCON AJCON
PRINT RESULTS XCON»ACON
PRINT RESULTS S I GMA »R"HOL * L ,CP
PRINT COMMENT $_NUCLEATION THEORY QUANTITIEbS

TRTn'T 'RESULTS RAD.NDOT.DELG*G
R

TIN IT IAL I ZE~ FOR"" NOZZLE COMPUTATIONS STARTING AT THE CONDENS-
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. R ( I J

>D( I )

)T ( 1 )

CINT. THE
ThE NOZZ

UTED. NOT
ORM SINCE
MESH WE W
= VAPOR
= MIXTUR
= TEMPER
= FLOW V
= MACH N
= CONDEN
= FRACTI
CONDEN

= THE IN

THE DR
= RADIUS
= THE NU

FORCED
i

= SURFAC
•

= LIQU ID
'

" = ' SPECIF
.

= LATEN T

IE IDENTIF
:

= POINT

R (

RONL'
RARE
RTAII

1UIRE
'PORA
IPS."

= DISTAN
= NOZZLE
= AREA I

E POI_NTS»
T 1 N COR E

ON TAPE._
D TO OBTA
RILY IN C

VEC
LE A

E 1H
A V

ANT
PRES
E DE
ATUR
ELOC
UMBE
5ATE
ON*
oED
CREA
OPS
OF

MBER
FRO

E TE
DEN

IC H

HEA
YING
OF E

CE F

ARE
NCRE
THE
AL

ALL
IN T

ORE

TOR X

T WHI
AT IT

ECTOR
TO CA
SURE
NSITY
E

ITY
R

INCR
BY MA
oTATE
SE IN

INITI
DROPS
OF D

M X ( I

NSION
SI TY
EAT A

T

GUAN
VALUA
ROM L

A

ASE F

IR IN

L THE
QUANT
HOSE
AS UN

CONTAINS THE POINTS ALONG THE
CH THE QUANTITIES DESIRED ARE TO
lb NOT NECESSARY THAT THE SPACING
DELX IS PROVIDED. AT EACH POINT

LCULATE

nASE oINCE ThE LA^T MEoH POINT
SS» OF THE VAPOR THAT IS IN THE

RADIUS* SINCE THE LAST POINT, OF
ALLY FORMED AT POINT I

INI T I ALLY FORMED AT X( I )

ROPS PER SECOND THAT ARE NEWLY
-1 ) TO X( I

)

T CONSTANT PRESSURE

T I TIES
TION
AST MESH POINT

ROM LAST MEbH POINT
CREMENTS AND THE INTEGER INDEX N

REST OF THE I NFORMAT ION ~ I S MAIN-
ITIES_FOR PO INT N, HOWEVER, ARE
FOR PO I N T N + 1 • HENCE THEY AR E

"

INDEXED QUANTITIES WITH THE ABOVE

INITIALIZE TO CONDENSATION POINT

CON
'CON
)=rhocon"
JCON
ICON
:con
tCON
:cute nozzle
;a=a-a<"i )

($AREAS,XCON-DELX,A( 1 )

)

)INT =

:CUTF IOCTRL.
.U=.0001*"UCON
KIT=XCON+XRANGE

U( 1 )=U+DELU
WHENEVFR U ( 1 ) •>_L_, 0_^_

"PRTNT COMMENT" 54
JCITY AT THE NEXT MESH

TRANSFFR TO S34'
'"

END OF CONDITIONAL

the ini TfAL "Approximation to the velo
POINT IS NEGATIVE. S
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S 3

331

ST2~

S33

BEGIN itera
FLOW EQUAT1
ALLOWED PER

TION ON DELG UNTIL NUCLEATION THEORY AND
ONS AGREE. A MAXIMUM OF GITLR lTt.RATIU.MS
ME Sri POINT.

RE

I T~R=GI TER
N = N +

1

WHENEVER M.G.
PR'INT COMMENT

1GRAMWED LIMIT.S
TRANSFER TO S

END OF CONDIT
DELX (N) =DELX
X< N

)

=X( N-] 1+DELX
WHENEVER X.G.
PRINT COMMENT

1 DESIRED.J
TRANSFER TO S

END OF CONDIT
EXECUTE NOZZLE.!

WHENEVER A ( 1

)

PRINT COMMENT
1MESH POINT DOES

PRINT RESULTS
TRANSFER TO S

END OF CONDIT
DELA( 1 ) =A( 1 )^A_
DELG( 1)=DELG
G( 1 )=G+DELG( 1

)

EXECUTE'CFLOW.
L = FL.( T ( 1 ) )

TDROP=C/ (R-ELOG.
RHOL=FRHOL. ( TDRO

1COO
S4

34
IONAL

(N )

X L I M I T

3>4

NUMBER OF MESH POINTS EXCEEDS THE PRO

THE NEXT POINT WOULD EXCEED THE RANGE

34
IONAL
SAREA* ,X ( N ) »A ( 1 ) )

.F.O.
S4 NUZZLE SUBROUTINE ERROR INDICATION -

NOT LIE INSIDE NOZZLE.

$

X ( N )

34
IONAL

( A ( 1 ) »DELA( 1) ,G ( 1 ) »DELG ( 1 ) »P,RHU,T.U.M)

SIGMA=FSIGMA. ( TD
TEST =G(1 )

EXECUTE NUCLE2.
1U( 1 ) iMI 1

)

.MDOT.A
~~
61 1 ) =G + DELG( 1 )

TtST=.ABS. ( TEST-
WHENEVER TEST.L.

_JTbR=ITER-l.
"WHENEVER ITER.GE
PRINT COMMENT $

~X=X ( N

J

DELX=DFLX(N)
A = A( 1 )

DELA=DFLA( 1

)

" P=P( 1

)

RHO=RHC ( i

)

T = T( 1 )

DELU=U( 1 )-U
U=U( 1

)

M=M( 1

)

"" DELG = DFLG( 1 )

_G=G( 1

)

THROUGH S^3,FOR
RAD( I ) =RAD( I ) +DR

R-"
EXECUTE IOCTRL.

IT

(P( 1 ) ) )

P)

ROP)

(X(N)»DELX(N),A(l)»DELA(l)»P(l),RHO(l)»T(l),
LPHAtN»RAD»DRAD»NDOT»DELG( 1]

)

G( 1 ) )

.00001 * TRANSFER TO S32

•0.»TRANSFER TO S31
$

I=0» 1 * I »G. (N-l

)

A D ( I )
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534

TRANSFER TO S29

TRANSFER TO START

INTERNAL FUNCTION FOR OUTPUT OF THE FLOW QUANTITIES AT
MFSH POINT X. LATER THIS SECTION MAY ALSO SAVE THIS
INFORMATION FOR FURTHER PROCESSING.

IJMTERNAL FUNCTION

ENTRY TO IOCTRL.

^WHENEVER N.E.PPOINT
'PRINT COMMENT $4' " NOZZLE CONDITIONS — S

PRINT RESULTS N > X » DELX A > DELA , P , RhQ , T , U >M > RAD ( N ) » NDOT ( N ) >

DELG,G
WHENEVE_R_N.G.O

~pr"in~t results radto ) . . . rad^ n- 1 )

end of conditional^ „ _ _ _
>'po!nt=n+xpoin't
end_of conditional
"function return

END OF FUNCTION

"INTEGER I,N»PPOINT
DIMENSION DELX( 1 00 )_»J3RAD ( 1000)»NDOT(1000)»RAD(1000)»X(I000)
DIMENSION" A( l") ,DELA( 1 ) ,~DELG( 1 ) ,G( 1 ) »M( 1 V . P ("lT.RHO ( 1 ) »T( 1 )

U ( 1 ) Z ( 1 )

VECTOR VALUES XPOJ.NT" = 1

VECTOR
VECTOR

VALUES LITER =

VALUES GITER =

10.
= 10.

"END "OF PROGRAM
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6C0MPILE MAD, PRINT OBJECT.PUNCH OBJECT I FLOW00 1 I FLOWOO*

R__
. _ AERONAUTICAL ENGINEERING

"R "NOZZLE CONDENSATION research"
R

R ISENTROPIC FLOW
R^
RRESEARCH— J. GRIFFIN PROGRAMMING-- L. "HARDING ~JULY 1963
R

risentropic 'flow equations for compof fn g ~"

pres sur e »
"
'mach number

rarea, velocityand density given the temper ature and the
Rfollowing Parameters
r astar - throat area of nozzle
"R" CP "-"SPECIFIC HEAT AT CONSTANT PRESSURT
R GAMMA - VAPOR EXPONENT
'R PZERO"'- INITIAL PRESSURE ' '

R RHZERO -INITIAL DENSITY
T<

"'"" TZERO "-"'INITIAL TEMPERATURE""
R

EXTERNAL FUNCT ION" (Al »A2 » A3"»~A"4»A5 »A6 )

R

R ""THIS ENTRY PROVIDES" FOR PICKING UP THE ~PAR AMETerTTTsTED
_R _ABOVE»_ THEY ARE THEN SAVED INTERNALL Y FOR L ATER USE.
R"
ENTRY TO IFLOWS.

" A S T A R = A 1

CP = A2 _
GAMMA=A3

"

PZER0=A4
RHZERO=A5

~~~
TZERO=A6

" function return
r

"R ' THIS" ENTRY" COMPUTET THE UNKNOWN QUANTITIES
R A] = NOZZLE AREA
R A2 = MACH NUMBER"
R A3 = PRESSURE
R A4 = D ENSTTT ""( "R H T

"

R A6 = VELOCITY
R IN TERMS OF THE PARAMETERS SAVED FROM THE LAST CALL
R OF 'IFLOWS* AND
"R

"'

A5" = TEMPERATURE
~

R NOTE THAT THE LIST OF ARGUMENTS IS AL PHABETICAL.
~R

_ENTRY TO I FLOW.
~ T = A5"" '

R PRESSURE
~EXP =GAMMA/ ( GAMMA- 1 . )

Z=(T/TZERO) .P. EXP
—A3=PZERO*Z
R VFLOCITY AND MACH NUMBER
"Z=~27*TTZER0-Tr
A6=SQRT. (CP*Z)

"7^Z7TGAMMA-T.T'
A2=SQRT. (Z/T)

"R DENSITY AND ~NOZ Z CE~ AREA
EXP=1 ./ ( GAMMA-1 •

)

z = i . + . b ytr2TTA?7ryF~
A4=RHZER0/(Z .P. EXP)
tXP=~r5^ ( GA~MMA +TTT

*

EXV
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Z=2.*Z/ (GAMMA+1 • )

z=(z .p. fxpj/a2
aT=astar*z

Tunction Return

END OF FUNCTION
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iCOMPILE MAD*PRINT OBJECT »PUNCH OBJECT
R AERONAUTICAL ENGINEERING
R NOZZLE CONDENSATION RESEARCH
R

R CONDENSATION FLOW
R

RRESEARCH— J. GRIFFIN PROGRAMMING— L. HARDING
R

RCOMPUTATION OF VALUES OF PRESSURE »D
RNUKDER AND VFLCCITY THAT SATISFY TH
RAPPLY AFTER THE ONSET OF CCNDENSATI
RHAVE COMPUTED THE CONDITIONS AT X A

RTHE ARGUMENTS REQUIRED ARE

CFLOWOOlCFLOwOO*

UULY 1963

ENS I TY» TEMPERATURE tMACH
E FLOW EQUATIONS THAT
ON. IT IS ASSUMED THAT WF
ND DESIRE THOSE AT X+DELX

R DELA
R A

R DFLG
R G

R P

R RHC
R T

R U

R M

AREA INCREASE FROM X TO X

AREA AT X+DELX
CONDENSATE MASS INCREASE
CONDENSATE MASS AT X+DELX
PRESSURE AT X

DENSITY AT X

TEMPERATURE AT X

VELOCITY AT X

MACH NUMBER AT X

RTHE PARAMETERS CP»L AND MU ARE REQU
RTHE FUNCTION FL.(T) MUST BE USED HO
RT IS NECESSARY. THE UNKNOWN GUANTIT
RRHCt 1 ) ,T ( 1 ) »U( 1 ) AND M(l). IT IS AS
RAN INITIAL APPROXIMATION TO THE VEL
RPOINT ON ENTRY.
R

EXTERNAL FUNCTION ( A . DELA , G DELG PA

R

+ DELX

FROM X TO X+DELX

I RED FROM PROGRAM COMMON.
WEVER SINCE ITERATION ON
IES ARE RETURNED IN P( 1 )

,

SUMED THAT U(l) CONTAINS
OCITY AT THE NEXT MESH

»RHOA »TA,UA»MA )

PROGRAM COMMON GAMMA, MU, B, C, CP, L» RHOL , SIGMA
R

R

ENTRY TO CFLOW.
~U = UA ( 1 )

DELU=U-UA
MDQG=DELG/ ( l.-G)
DQA=DELA/A
L = FL. ( TA )

THROUGH S2,FOR I = 1 , 1 , I .G . 1 00

DQU=DELU/U

COMPUTATION OF DELT AND T FROM THE ENtRGY EQUATION

DELT = (L*D'r LG-U*DELU)/CP
T=TA+DFLT
L = FL. ( T )

"R"

R COMPUTE DELRHO/RHO FROM CONTINUITY EQUATIUN
~~R

~

DQRHO=DQA+DQU
~D~Q~RHo = -DGRHO

—COMPUTE DELP/P FROM" THE
-
EQU/

"rjuP"=D^RH'o+"rDETT/T )"=RE<2r<s

WE CAN NOW COMPUTE THE VELOCITY CORRESPONDING TO
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"R
-

"These difference quotients from the momentum equation
r

DELU=-(DUP*R*T*(1.-G) )/(MU*U)
NEWU=UA+DELU
TEST=.ABS. ( l.-NEWU/U)
U=NEWU

S2 WHENEVER TEST . L . EPSLON TRANSFER TO S3
R

R ITERATION LIMIT HAS BEEN REACHED WITHOUT CONVERGENCE
R

PRINT COMMENT $ «CFLOW« - ITERATION FAILED TO CONVERGES
EXECUTE ERROR.

R

R CONVERGENCE CRITERIA SATISFIED
R

S3 TA(1)=T
UA( 1 )=U
DQRHO=l.-DQRHO
DQP=1.-DQP
PA( 1 )=PA/DQP
RHOA( 1 )=RHOA/DQRHO
NEWT=R*GAMMA*T/MU
MAI 1 )=U/SQRT. (NEWT)
FUNCTION RETURN

R

VECTOR VALUES R ==8.314E+07
VECTOR
INTEGEF

VALUES
! I

EPSLON=1.E-06

R

END OF FUNCTION





-82-

iCOMPlLE MAD* PR INT
R

R

R

R

R

RRESEARCH
R

RCOMPUTAT
RBY NUCLE
RABLE.
R(l) CONS

OBJECT, PUNCH OBJECT
AERONAUTICAL ENGINEERING

NOZZLE CONDENSATION RESEARCH

NUCLEATION THEORY - i

— J. GRIFFIN PROGRAMMING-- L. HARDING

NUCL1001NUCL100*

JULY 19o3

R

R

R

R(2 )

R

R

R

R

R

R (3 )

K

R

R

R

R

R

NA
K

R

PARA
B

C

DEL
MDO
MU

VARI
A

P

T

RHCL
SIGMA

ION OF THE MASS DUE TO INITIAL CONDENSATION AS GIVEN
AT I ON THEORY. THE FOLLOWING QUANTITIES MUST BE AVAIL-

TAN T S
= AVOGADROS NUMBER (MOLECULES/GRAM MOLE)
= BCLTZMANN CONSTANT (

D

YNE*CM/ DEGR E EK

)

= UNIVERSAL GAS CONSTANT ( DYNE *CM/ GRAM MOL E*DEGREEK. )

METER

S

= SATURATION CURVE CONSTANT
= SATURATION CURVE CONSTANT

X = DELTA X FOR VOLUME
T = RriOSAT*ASAT*USAT

= MOLECULAR WEIGHT OF VAPOR
AELES
= NOZZLE AREA
= PRESSURE
= TEMPERATURE
= LIQUID DENSITY DEPENDENT ON TEMPERATURE
= SURFACE TENSION DEPENDENT ON TEMPERATURE

P

EXTERNAL FUNCTION ( A 1 , A2 , A3 , A4 ,

A

b , A6 , A7 , A«

)

PROGRAM COMMON GAMMA, MU, B, C, CP, L, RHOL , oIGMA
R

RCOMPUTE
RCCNDITIO
RFORMED I

RCOMMON P

RTC THE D
R

entr'y to
A = A1
DELX=A2
MDOT=A3
P = A4
T = A5

R
"

R COM
R

RADIUS= (

RADIUS=R
R

R ' COM
R CON
R

TEXP=RAD
-TExT^r-T4
N=SQRT.

(_

~N"=p*N7TK
N = P*rv*EX
N=. 79788

THE RADIUS OF THE DROPS CONDENSING UNDER THESE
NS, THEIR NUMBER AND HENCE THE CONDENSATE MASS
N A VOLUME ELEMENT OF LENGTH DELX. THE PROGRAM
ARAMETERS RHCL AND SIGMA ARE ASSUMED TO CORRESPOND
ROP TEMPERATURE FOR THE GIVEN FLOW CONDITIONS.

NUCLEI.

PUTE RADIUS ( CM. ) OF THE DROPS THAT ARE CONDENSING

2.*SIGMA*MU) / ( RHOL*T

)

ADIUS/(R*(ELOG. (P)-B+C/T)

)

PUTE THE NUMBER OF DROPS OF THIS SIZE THAT ARE
DENSING PER CENTIMETER CUBED PER SECOND.

I US*RADIUS/K
. 1887902*SI GMA* T E XP ) /

T

5IGMA»MU/NA (1)

)

( 1 )*T)
P.

(

TFXP) / (K*T*RHOL

)

46 *M
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NDOT=N*A*DELX

COMPUTATION OF PERCENT OF LIQUID MASS* DELTAG

DELG=4.188 7902*RHOL*NDOT*RADIUS
DELG=DELG*RADIUS*RADIUS/MDOT

6f RA_DIUS
7=NDOT

'

8=DELG
FUNCTION RETURN

R

ector values
ector values,
ector Values

NA=6.027E+23,6.027E+03
K=1.379E-16»1.379E-06
R=8.314E+07

END OF FUNCTION
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SCOMPILE MA Dt PRINT ~
B J EC T . P U N C H~OB"j E C

T

NUCL200 1NUCL200*
_R AERONAUT ICAL ENGINEERIN G
R NOZZLE CONDENSATION RESEARCH
R

R NUCLEATION THEORY - 2
R

RRtSEARCH— J. GRIFFIN PROGRAMMING— L. HARDING JULY 1963
R

RCOMPUTATION OF THE QUANTITIES ARISING DUE TO CONDENSATION
RUNDER THE FOLLOWING CONDITIONS
R X = NOZZLE COORDINATE
R DELX = INCREMENT SINCE LAST MESH POINT
R A = NOZZLE AREA AT X
R DELA = NOZZLE AREA INCREASE SINCE X-DELX
R P = PRESSURE AT X

R RHO = MIXTURE DENSITY AT X
R T = TEMPERATURE AT X

R U = VELOCITY OF FLOW AT X
R M = MACH NUMBER AT X
R MDOT = TOTAL MASS FLOW RATE
R ALPHA = ACCOMODATION COEFFICIENT
_R N = MESH POINT NUMBER SINCE CONDENSATION. THE POINT
R OF CONDENSATION IS MESH POINT ZERO.
RTHE QUANTITIES TO BE COMPUTED ARE
R RAD(N) = RADIUS OF NEW DROPS FORMED AT X. ( RAD( I ) IS RADIUS
R AT X-DELX OF DROPS INITIALLY FORMED AT MESH POINT
R I AND IS NECESSARY INPUT )

R

N

DOT( N) = NUMBER OF DROPS OF RADIUS RAD(N) FORMED BETWEEN
"R~ X-DELX AND X. ( NDOT ( I ) IS THE NUMBER OF DROPS
JR INITIALLY FORMED BETWEEN MESH POINTS 1-1 AND I AND
R IS NECESSARY INPUT. )

RDELR(O) = DELR(I) IS THE RADIUS INCREASE BETWEEN X-DELX AND X
R THRU OF THOSE DROPS INITIALLY FORMED BETWEEN MESH
RDELR(N-l) POINTS 1-1 AND It THESE QUANTITIES MUST ALL BE
R COMPUTED. )

R DELG = CONDENSATE MASS INCREASE FROM X-DELX TO X DUE TO
R NEWLY FORMED DROPS AND GROWTH OF OLD DROPS.
R

RTHE ARGUMENTS ARE THE QUANTITIES GIVEN ABOVE IN THAT ORDER.
RNOTE THAT THE ZEROTH WORD OF THE VECTOR ARGUMENTS ARE TO BE
RGIVEN* "FURTHER THESE VECTORS CONTAIN REQUIRED INPUT AS WELL
RAS SPACE TO PUT THE DESIRED OUTPUT. FURTHER THE USUAL
RPROGRAM COMMON PARAMETERS ARE ASSUMED TO CORRESPOND TO THE
RARGUMENT TEMPERATURE.
R

EXTERNAL FUNCTION ( X »DELX , A » DELA »P > RHO » T »U »M ,MDOT » ALPHA »N

»

T RAD»DELR,NDOT*DELG )

R

PROGRAM COMMON GAMMA* MU» B. C» CP» L» RHOL SIGMA
INTEGER N

_^ .

ENTRY TO NUCLE2.
"R

EXECUTE NUCLEI. (

A

»DELX »MDOT »P ,

T

»RAD ( N ) »NDOT ( N ) »DELG )

_^ _
R WE HAVE NOW ONLY TO COMPUTE THE RADIAL INCREMENTS AND
~R THEIR CONTRIBUTION TO THE CONDENSATE MASS INCREASE. THE
R DROP TEMPERATURE IS TAKEN AS THE SATURATION CURVE
~R TEMPERATURE CORRESPONDING TO THE GIVEN PRESSURE.
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si

S2

R

_TURCP=C/ (B-ELOG. (P)
)

DELR = "7978.846 * SQRT.~( 1 . 379*. 6027/ ( T*MU ) )

_DELR = DELX*

(

ALPHA/L)»(P/RHOL)»(DELR/U)
THROUGH SI, FOR f=1 » 1 » I .~G. ( N-l

)

DELR (

I

)=DELR

* ( TDROP-T )

COMPUTATION OF RESULTANT TOTAL CONDENSATE MASS INCREASE

DELG2_=0.
TH
DE
DE

ROUGH S2,F0R I =0 1 I . G. ( N-l

)

LG2=DELG2+ RAD(I)*RAD(I) *NDOT( I )*DELR( I

)

FU

LG=DELG+12.5 66 3706*RHOL*DELG2/MDOT

NCTlON RETURN

INTEGER I

R

END OF FUNCTION
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CBJECT»PUNCH OBJECT
AERONAUTICAL ENGI

NOZZLE CONDENSATION

NOZZLE

N E ERIN G

RESEARCH

SCuKPILE V.AC .PRINT
R

R

R

R

R

RRESEARCH— J. GRIFFIN PROGRAMMING— L. HARDING
R

RORIGIN OF THE COORDINATE SYSTF
ROF THE THROAT, I.E., A(0) = AS
RPOSITIVELY IN THE DIRECTION OF
RFROM THE THROAT. THE NOZZLE PA

NOZLEOOlNGZLtOO*

JULY 1963

M FOR THE NOZZLE IS THE CENTER
TAR. THE VARIABLE X INCREASES
FLO^' AND IS NEGATIVE UPSTREAM

RAMETERS ARE
R

R

R

R

R

RTHE
R

EXTERNAL
R

ENTRY TO
R

ASTAR
XMIN
XMAX

I NANG
OUTA^G

THROAT AREA
X-COORD1NATE OF

X-COCRDINATE OF
INTAKE HALF ANGL
EXIT SIDE HALF A!

INTAKE
EXIT
E IN DEGREES
NGLE IN DEGREES

ENTRY THROAT R^ADS AND PRINTS THESF PARAMETERS.

FUNCTION (A1,A2,A3)

NOZZLE.

WHENEVER Al .E. STHROATS

THROAT AREA ANU INITIALIZE IF NECCESSARYRETURN
READ DATA
PRINT COMMENT SO NOZZ
PRINT RESULTS AS T AR , I NANG , CUT

A

PRINT RESULTS XMIN,XMAX
A= I NANG/ RAD I AN
INTAN = SIN. (A) /COS. (A)

A=OUTANG/RADIAN
OUT TAN =S IN. ( A ) /COS. ( A

)

A3=ASTAR
FUNCTION RETURN

LE PARAMETERSS
NG

OR WHENEVER Al SAREAi

D RETURN IN A3

.L.O.

)

COMPUTE THE AREA AT A2 AN
WHENEVER (XMIN.L.A2) .AND. (A2

A=INTAN* ( . ARS. A2)
OR WHENEVER (A2.G.0.) .AND. (A2.L.XMAX)
A=OUTTAN*A2
OTHERWISE
A3 = C.

WHENEVER A2.F.0. ,A3 = ASTAR
FUNCTION RETURN
END OF CONDITIONAL
A3=ASTAR+2.*A
FUNCTION RETURN

OR WHENEVER Al SINVERSS

COMPUTE THAT POINT ON THE
HAS AREA 'A3'. THIS POINT
WHICH MUST BE IN A2 ON EN

TnE PARTICULARS. IF A2( 1

)

SOLUTION IS IN A2» IF IT

X-AXIS OF THE NOZZLE THAT
DEPFNDS ON THE MACH NUMBER

TRY, SEE THE PROGRAM FOR
IS 1. ON RtTURN THEN THE

IS ZERO THEN THE SOLUTION IS
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t STORED IN A2 BUT DOES NOT LIE INSIDE THE NOZZLE.
_A=.5JM A3-ASTAR )

WHENEVER A . L • . tA = 0."
'

X( 1 )=1.
MACH='A2
WHENEVER MACH.L.l.

X

WH
'OTHER

_X =

WH
END
A2 = X

A2(J.)
"FUNCf

-A/INTAN
ENEVER^ XMIN.G.X t_X( 1 )=0.
WISE
A/OUTTAN
EN EVER XTGTXMAXTX ( 1 )

="0."

F CONDITIONAL

= X( 1

)

ION RETURN'

END OF CONDITIONAL

INTEGER Al
DIMENSION _X_m_ ___________
"VECTOR" VALUES* RAD I AN = 57. 2 9 5 779 5

R

END OF FUNCTION
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JCOMPILE MAD. PR INT
R

R

R

R

R

RRESEARCH
R

RCOMPUTE
R RHO
R

_R SIGM
R NOTE" THA
RTHAT THE
RTO BE HE
RANY ONE.
"rsimpUy~r
RI T IS JO
RD'ROP TEM
RTtMPERAT
"REN TRIES,
RTHE LATE

OBJECT, PUNCH OBJECT
AERONAUTICAL ENGINEERING

VAPOR001VAPOR00*

NOZZLE CONDENSATION RESEARCH

VAPOR PARAMETERS

— J. GRIFFIN PROGRAMMING— L. HARDING JULY 1963

AS A F

L = LI
L = LA
A = SU
T EACH
IR VAL
LD CON
OR AL

E TURN I

BE NO
PERATU
URE TH
WHEREA
NT HEA

UNCTIO
QUID D

TENT'""H

RFACE
OF TH

UES AR
STANT"
L» OF_
NG THE
TED TH
RE, NO
EN THA
S THE
T.

N OF
ENSIJ
EAT""
TENSI
E" QUA
E STO
WIT HO
THESE
~ VALU
AT SI

TEMPERATURE THE FUNCTIONS
Y

ON
"Nfl TIES MAY BE COMPUTED SINGLY AND
RED I N LOW CORE.. TH IS P ERMITS T HEM
ut" ini t i al~i zing These sub rout ines.
_PARA_MET_ERS_ MAY B E HELD CONSTANT BY
E FROM "PROGRAM COMMON.
GMA AND RHOL ARE FUNCTIONS OF THE

t THE VAPO~R~tEMP"ERATURE. IT IS THE DROP
T MUS__BE USED IN CA LLIN G ON T_HESE_JWO_
VAPOR TEMPERATURE IS USED WHEN COMPUTING

R

EXTERNAL FUNCTION (T)

FRHOL.
PUTE THE VALUE OF THE LIQUID DENSITY
RETURN VALUE

PROGRAM COMMON GAMMA, MU, B, C, CP, L, RHOL, SIGMA
R

ENTRY TO
R ~ COM"

FUNCTION
R

ENTRY JO
R '

"
COM

FUNCTION
R

ENTRY TO_ _
M

_

FUNCTION
R

END OF F

FL.
PUTE THE VALUE OF THE LATENT HEAT
RETURN VALUE

_FS.IGMA.
PUTE THE VALUE OF THE SURFACE TENSION
RETURN VALUE

UNCTION





APPENDIX C

INPUT DATA

1. Summary of input data and units required.

2. Table of input data used to obtain results plotted in Figures 1

through 13.

3. Plots of vapor properties obtained from References 20 through

24.
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Parameter

PZERO

RHZERO

TZERO

PE

GAMMA

MU

CP

L

SIGMA

RHQL
C
B

LAJJ

}
ALPHA

DELX

XRANGE

XPOINT

TRANGE

DELTAT

PERCNT

ASTAR

XMIN

XMAX

INANG

Units

2
dyne/cm

/ 3gm/cm

°K

Summary of Input Data Requirements

Definition

Initial pressure (P )

Initial density (p )

Initial temperature (T )

Initial approximation to saturation pres- dyne/cm'
sure (P )

e

Ratio of specific heats (y)

Molecular weight of the vapor (/i)

Specific heat (C )

Latent heat (L)

Surface tension (a)

Liquid density (p. )

Saturation curve constants

Accommodation coefficient (a)

Incremental step in X (Ax)

Length of interval, starting with conden-

sation point, over which flow conditions

will be computed

Points which will be printed out, i. e.

,

every fifth, tenth, etc. ,
point.

Temperature range over which program
will search for condensation point

Initial step size in condensation point

search over TRANGE

Value of epsilon for determination of onset ofj&ecimal

condensation (fraction

2
Throat area (A*) cm

N. D.

gm/gmol

dyne-cm/gm- K

dyne-cm/gm

dyne/cm

gm/cm
fdyne/cm*
Land OK

N.D.

cm

cm

N.D.

'K

'K

X-coordinate of intake

X-coordinate of exit

Inlet half angle

cm

cm

degrees
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Summary of Input Data Requirements (continued)

OUTANG Diffuser half angle (6 . )

NA Avogadro's number (in program)
6. 027 x 1023

R Universal gas constant (in program)
8.314 x 10?

K Boltzmann's constant (in program)
1.379 x 10" 16

degrees

molecules/gmol

dyne-cm/gmol K

dyne-cm/ K
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Table C-l. Input Data

N
2
(I) N

2
(II) Cu Zn(I) Zn(n)

p 8 45x 10
6

8, 45 x 10
6

lxlO
6

lxlO 6 lxlO
6

u

o 00952 .00961 2. 54 x 10~ 4 3. 93 x 10" 4 6. 04 x 10' 4

T 298 295 3000 1500 1300

P
e

2000 2000 166.7 166.7 166.7

y 1.4 1.4 1.667 1.667 1. 667

P 28.02 28.02 63. 54 65.37 65.37

c 1. 07 x 10
7

1. 07 x 10
7

3. 26 x 10
6

3,,18 x 10
6

3,. 18 x 10
6

p
L 2. 3 x 10

9
2. 3 x 10

9
4.94x 10

10
1. 82 x 10

10
1. 82 x 10

10

a 25. 8-. 22T 24. 25-. 22T 1300 1000-. 26T 1000-. 26T

ph
1. 177-.00476T 1. 177=. 00476T 8. 9-. 0007T 7. 4-. 0008T 7. 4-. 0008T

C 882 882 34, 200 13, 800 13,800

B 25.7 25.7 25.46 25.3 25.3

a 1.0 1.0 1.0 1.0 1.0

A* .0645 .0645 .645 .645 .645

Xmm -5 -5 -5 -5 -5

X
max

25 25 5.8 21.1 58

INANG 45 45 45 45 45

OUTANG 9.75 9.75 20 45 20





Figure C-l. Vapor Pressure of Nitrogen,NBS Circular 564 (24)
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a
o

a

t3

Surface Tension for Nitrogen

References (23) and (24).

1.00

CO

s
u

a

Liquid Density of Nitrogen

References (23) and (24).

30 40 50 60 70 80 90 100 110 120

T, °K

Figure C-2. Surface Tension and Liquid Density versus

Temperature for Nitrogen
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Ref. (20) Thermochemistry for

Steelmaking

(22) Liquid Metals Handbook
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Figure C-4. Metal Vapor Properties
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Figure C-5. Metal Vapor Properties from Thermochemistry for Steelmaking (20).




















